Techn. Digest 1997 Intern. Topical Meeting on Microwave Photonics (MWP '97), p. 67

Diode Pumped and Packaged 10GHz Harmonically
Modelocked Ti:Er:LiNbO3;-Waveguide Laser for Soliton
Transmission

R. WESSEL, A. GREINER, W. QIU, H. SUCHE, AND W. SOHLER

Universitdt-GH Paderborn, Angewandte Physik
Warburgerstraie 100, D-33098 Paderborn, Germany
Fax-No.: ++49-5251-603422; e-mail: r.wessel@physik.uni-paderborn.de

Abstract: Modelocked laser operation with a stabilized, packaged and diode pumped Ti:Er:LiNbO;-
waveguide laser has been demonstrated at 1561nm (TE) and 1575nm (TM) wavelength with 14% slope
efficiency. Pulse widths of < 10ps at 10GHz pulse repetition rate have been measured.

Introduction

Modelocked lasers emitting in the third telecommunication window are promising sources for soliton
transmission systems. In particular, (harmonically) active modelocked lasers are interesting due to their
possibility to synchronize the pulse repetition rate to the high frequency system clock. Up to now both
external cavity semiconductor lasers and Erbium-doped fibre lasers have demonstrated pulse repetition
rates in the multi-gigahertz range. However, the pulses of semiconductor lasers are usually chirped and
asymmetric [1]; fibre lasers have a low potential for miniaturization and problems with supermode
competition noise [2]. On the other hand integrated optical modelocked lasers are rugged and can emit
transform-limited pulses [3].

Erbium-doped LiNbO; is an attractive material for the realization of such soliton sources. It has
excellent electrooptic properties, allows the incorporation of Er up to the solid solubility limit without
fluorescence quenching and the fabrication of high quality Er-doped waveguides [4]. Using a
monolithically integrated intracavity phase modulator as modelocker (FM-type modelocking) and a
broadband Fabry Perot waveguide cavity fundamental and harmonic modelocking [3],[5] have already
been demonstrated. However, the output power of these lasers was low and the emission wavelength
(1531nm, 1602nm) was not matched to the third telecommunication window.

In this paper we report a diode pumped, pigtailed and packaged harmonically modelocked laser with a
pulse repetition frequency up to 10GHz. The laser emits 10ps long pulses of more than 100mW peak
power at 1562nm and 1575nm wavelength, respectively, depending on the polarization of the pump.

Device fabrication

Half (with respect to the X-direction) of the Z-cut (Y-propagation) LiNbO; substrate has been doped
near the surface by indiffusion of 28nm of vacuum deposited Er at 1130°C during 125h. Subsequently,
photolithographically delineated 7um wide and 98nm thick Ti-stripes have been indiffused at 1060°C
during 8h to form the 66.5mm long waveguide channels. Attenuation figures of the undoped channels
down to 0.02dB/cm (TE) and 0.05 dB/cm (TM) have been measured at 1523nm wavelength,
respectively. The FWHM-figures of the near field intensity distributions of the modes at 1545nm
wavelength are 6.3um x 4.5pm (width x depth; TE) and 4.6pm x 3.1pm (TM), respectively. Within
experimental error the intensity distributions are identical for doped and undoped channels.

To avoid excess losses of the TM-mode an 0.6pum thick insulating SiO»-buffer has been vacuum
deposited onto the substrate surface prior to the electrode fabrication. The electrode structure of the
intracavity travelling wave phase modulator (modelocker) is a symmetrical coplanar microstrip line with
a gap to hotline width ratio of 0.75. First a thin electrode structure has been fabricated by
photolithographic lift-off of a sandwich of 30nm sputtered Ti and 120nm sputtered Au. Subsequently,
the Au-structure was electroplated up to a thickness of 6pm using as a cyanidic Au-electrolyte.
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The laser cavity is comprised of a high reflector on the rear side and a pump input coupler of optimized
output coupling for the signal (see e.g. [6]). Both mirrors consist of SiO,/TiO,-layers directly deposited
onto the polished waveguide endfaces using O,™-ion assisted reactive evaporation. The rear mirror
consists of 13 layers quarterwave at 765nm leading to about 98% reflectivity at both, pump and signal
wavelengths. The output coupler constists of 14 layers quarterwave at 946nm leading to a minimurm

reflectivity of about 7% at the pump wavelength (A ~ 1480nm) and an output coupling of the signal of
about 55%.

After characterization of the laser chip the pump input side of the cavity was pigtailed with the common
branch of a fiberoptic wavelength division demultiplexer (WDM) to allow coupling of a pigtailed pump
laser diode and extraction of the laser output in backward direction. The WDM has standard (9/125um)
fiber pigtails.

Finally, the pigtailed laser has been packaged including isolation, thermoelectric temperature control (<
+ 0.01K) and two cascaded 10/90% power splitters. A photograph of the packaged laser is shown in
Fig. 1. FC/PC connection is provided for pump input, output to a data encoding modulator (90%), tap
outputs (9% , 1%) for monitoring of modelocking stability and pulse peak power and to derive a control
signal for feedback stabilization (controlled pumping).
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Fig. 1: Photograph of the pigtailed, packaged, and thermoelectrically temperature controlled
modelocked laser.

Experimental results

The modelocked Er-doped laser has been investigated in terms of axial mode structure, power
characteristics, pulse width, spectrum and time bandwidth product for modelocking different harmonics
(2nd, 5th and 10th) of the axial mode frequency spacing. To drive the modelocker the rf-signal from a
highly stable generator was boosted using a narrow band low noise amplifier and then fed via a bias tee
to the travelling wave electrodes of the intracavity phase modulator. The electrodes are terminated AC-
coupled by a 50Q load.

To pump the Ti:Er:LiNbOs-waveguide laser a high power (up to 150mW from the laser pigtail) laser
diode of about 1480nm center wavelength and 12nm spectral width has been used. The pump power
was launched through the WDM into the modelocked laser. Up to 140mW of incident pump power were
available at the common branch of the WDM.

In Fig. 2 the power characteristics of the Er-laser is shown for TM(m)-polarized emission at 1575nm

and TE(o)-polarized emission at 1561nm wavelength, respectively. The polarization and wavelength of
the emission can be adjusted by the pump polarization. With n(c)-polarized pumping the Er-laser emits
at 1575(1562)nm n(c)-polarized. Threshold pump power and slope efficiencies are 56mW(65mW) and



14.4%(13.2%) for m(c)-polarized emission, respectively. Both, slope efficiency and output power are
more than an order of magnitude better than previously reported results [3],[5].
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Fig. 2: Output power versus pump power incident at the common branch of the f/o WDM-coupler
for both, - and c-polarized emission. The polarization dependent emission wavelength is

indicated.

To suppress relaxation spiking of the laser during modelocking 9% of the laser output were detected and
the detector signal fed to a specially designed control circuit. This circuit generates and superimposes a
correction component to the injection current of the pump laser diode to suppress relaxation oscillations
by controlled pumping. Up to 42dB reduction of the spectral power density at the dominant peak of the
noise spectrum around 450 kHz has been achieved leading to a relative intensity noise (RIN) of the laser
of -82.3dB/Hz for 3.5dBm of DC-electrical power (detector signal into 50Q). At frequencies above

100MHz the laser output is almost shot noise limited.

Results of modelocking are shown in Fig.3 for the 10th harmonic and n-polarized emission. With
33.2dBm of rf-power a pulse width of 9.5ps (FWHM) has been determined by deconvolution of the
autocorrelation trace assuming a Gaussian pulse shape. Together with the spectral width of 0.59nm a

time bandwidth product of 0.68 results.
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Autocorrelation trace as function of the relative pulse delay (left) and spectral power density

versus wavelength (right) for modelocking at the 10th harmonic (10.295GHz) in n-polarized

emission with 33.2 dBm rf-power.

For o-polarized emission at 1562nm wavelength 5th harmonic modelocking has been obtained at
4.971GHz. Time bandwidth products down to 0.45 have been achieved, but, as a result of the much
higher halfwave voltage and the much lower phase modulation index the stability of the pulses was

worse compared to the n-polarized case.



First Bit Error Rates have been measured with a pulse repetition rate of 2GHz. The driving frequency
was limited by the bit error measurement set up. A LiNbOj intensity modulator with an extenction ratio
of 23dB was used for the digital encoding. In Fig.4 the Eye-diagram at 2GHz is shown. With a pseudo
random bit pattern of 2’-1 length a Bit Error Rate of 1.9-10” within half an hour was detected.
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Fig. 4: Eye-diagram of the modulated pulse train at 2GHz

Conclusions

We have demonstrated a harmonically modelocked Ti:Er:LiNbOs;-waveguide laser of drastically
improved performance compared to former results. Output power and slope efficiency have been
improved by more than an order of magnitude. The emission wavelength is now suitable for applications
in the third telecommunication window. By feedback controlled pumping the RIN of the laser could be
reduced by 42dB. A Bit Error Rate of 10 at 2nd harmonic modelocking within half an hour has been
achieved. By optimization of the travelling wave electrode design it should be possible to
increase the pulse repetition rate of 10GHz even further.
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