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Highly localized discrete quadratic solitons
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We observe highly localized solitons in periodically poled lithium niobate waveguide arrays close to
phase matching for second-harmonic generation. With fundamental and second-harmonic input in one
channel the response indicates two distinguishable propagation schemes. Depending on the relative phase
between the two input waves, a self-trapped beam emerges, resembling closely either the in- or the out-of-
phase quadratic eigenmode of a single waveguide. A stable soliton propagates when the input waves are in
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phase.
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Second-harmonic generation (SHG), being the first
nonlinear optical effect investigated, is well under-
stood in both bulk and waveguide media.'™ For only
fundamental-wave (FW) input there is a continuous
energy exchange with distance between the FW and
its second harmonic (SH), whether it be asymptotic
as in the case of exact wave-vector match or periodic
as in the case of a wave-vector mismatch of Ak=2k,
—ky, where k; and k, are FW and SH wave vectors,
respectively. However, for SHG in waveguides or in
bulk for the diffractionless case there also exist sta-
tionary dual-frequency nonlinear eigenmodes con-
sisting of a FW and a SH part with no net energy ex-
change between them. Two species of eigenmodes
exist with FW and SH fields either in-phase or out-
of-phase and with a specific amplitude ratio that de-
pends on the wave-vector mismatch and the total
power.?”4 If diffraction is important in bulk media or
in slab waveguides, finite cross-sectional nonlinear
eigenmodes, spatial quadratic solitons, can form.””’
They also propagate without energy exchange be-
tween both frequency parts that are in phase and
with a FW/SH ratio that varies with wave-vector
mismatch and width.® Clearly there is a similarity
between these quadratic solitons and in-phase plane-
wave nonlinear eigenmodes. Because of the robust-
ness associated with solitons in general, the qua-
dratic solitons can be excited with a FW input only,
i.e., quite far from the steady-state soliton
composition.>®® In that case an interplay between
SHG, diffraction, and self-focusing leads to soliton
formation, and the excess electromagnetic energy is
radiated away into the diffracting dimensions. In
contrast, in channel waveguides, diffraction is ar-

0146-9592/05/091033-3/$15.00

rested so that the beam profile is independent of dis-
tance. Therefore the excitation of a quadratic wave-
guide eigenmode requires exact matching of the FW
and SH amplitudes and phases right at the input
facet since the excess radiation is not able to escape
into the bounding media.

However, some aspects of diffraction-related eigen-
mode excitation should persist if excess energy can be
shed from the individual channels when they are
placed inside an array of channels that are coupled to
their nearest neighbors through their evanescent
fields. In fact it was recently predicted and demon-
strated experimentally that discrete quadratic soli-
tons exist in these systems.g’1 In those papers soli-
tons extending over a few waveguides were
investigated. In contrast, for highly localized discrete
solitons™ with the light guided mostly in a single
channel with fundamental-only excitation and weak
coupling to the neighbors, the situation closely re-
sembles light propagation in a single waveguide and
excess energy can escape only slowly. Therefore
strong oscillations between the FW and the SH en-
ergy can be expected for FW input only, and the
highly localized soliton cannot stabilize along the
propagation path.

In this Letter we shall elucidate this similarity by
performing numerical and experimental investiga-
tions of light propagation in an array in which the
power is dominantly confined in a single channel.

The spatiotemporal evolution of mode amplitudes
u, (FW) and v,, (SH) is described in a frame moving
with the SH group velocity by the normalized time-
dependent discrete nonlinear coupled mode equa-
tions
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where ¢,5,AB, and y represent the linear coupling
constant, the inverse group-velocity mismatch, the
linear wave-vector mismatch, and the effective qua-
dratic nonlinear coefficient, respectively. Note that in
Eqgs. (1) SH field coupling can be neglected for the
simulation of our experiment because the coupling of
the SH is much weaker than that of the FW because
of the much tighter SH mode confinement in the
channels.

Based on Eq. (1) we simulated light propagation in
waveguide arrays using the actual experimental pa-
rameters. Waveguide arrays (each consisting of 101
guides) were fabricated on 70-mm-long Z-cut LiNbOs
wafers by diffusing 7-um-wide Ti stripes of 90-nm
thickness into the substrate for 8.5 h at 1060°C. Low-
loss waveguides with losses of 0.2 dB/cm for the FW
and 0.4 dB/cm for the SH were obtained. For efficient
SHG phase matching between the FW (1550-nm)
TM,, and the SH (775-nm) TM,, waveguide modes, a
uniform quasi-phase-matching grating (ferroelectric
domain structure) of 16.75-um periodicity was writ-
ten in the sample by electric field poling. The center-
to-center spacing between the array’s channels was
16 pm, which yielded a linear coupling length of 25.6
mm for the FW. The simulations were performed for
both the cw case and for 7.5-ps-long pulses.

First, presenting the results of simulations of an
idealized system with cw excitation in lossless and
perfectly uniform waveguides, we discuss the prin-
ciple of the eigenmode excitation to be investigated.
Simulations with only a FW field input into a single
channel of the array yielded the FW and SH intensity
evolution during propagation for ABL=1067 for a cw
input FW power of 560 W, which is shown in Fig. 1.
Clearly no stationary mode is obtained and periodic
power exchange between the FW and the SH occurs
with a period equal to the coherence length of SHG,
which is similar to SHG in a single waveguide. Simi-
lar results were obtained over a large range of condi-
tions. When a SH seed with appropriate power and in
phase with the FW field was added to the input, for
the same total power of 560 W (525 W in the FW and
35 W in the SH), stationary FW and SH fields could
be obtained on propagation (see Fig. 2). These are the
highly localized, discrete quadratic solitons free of
energy oscillations. The powers of the soliton’s FW
and SH components are essentially the powers asso-
ciated with an eigenmode of the isolated channel, in-
dicating that they resemble each other well.

Next, the dependence of the output on the input
relative phase between the FW and the SH fields in
the seeded case was investigated numerically. For
comparison with the experimental results, here we
took all the experimental details into account, includ-
ing losses, pulsed excitation, and the measured lon-
gitudinal nonuniformities in the wave-vector
mismatch.® Shown in Fig. 3 is the FW and SH out-

Fig. 1. Numerical simulation of FW (left-hand side) and
SH (right-hand side) cw propagation with input conditions
of PFW= 560 W, PSH=O W, and ABL: 1067r.

Fig. 2. Numerical simulation of FW (left-hand side) and
SH (right-hand side) cw propagation with input conditions
of Pryw=525 W, Pgy=35 W, and ABL=1061.
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Fig. 3. Numerical pulsed simulations of array output ver-
sus relative phase difference between FW and SH seed. In-
put powers for the FW and the SH are 400 and 7 W, respec-
tively, with a mismatch of ABL=907. Left-hand side, the
FW; right-hand side, the SH.

put’s dependence on the relative input phase between
them for pulsed single-channel excitation. We chose
input peak power levels for the best soliton formation
that differed from the powers used in the idealized
cw simulations. Note that for the in-phase case the
FW beam at the output is primarily localized to the
central (excitation) channel and the SH, although
also localized, is weak. For the out-of-phase case the
FW output resembles a discrete diffracted beam, and
it is the SH that is strongly localized in the central
channel. In fact, as shown in Fig. 3, inputs over the
full range of relative phases always evolve into essen-
tially two well-defined output states. The one cen-
tered at zero relative phase difference corresponds to
a stable, highly localized discrete quadratic soliton
closely related to the in-phase single-channel eigen-
mode, whereas the second is centered on a relative
phase difference of 7 and corresponds to the out-of-
phase eigenmode because of the lack of coupling in
the SH. In the second case, part of the initial FW
power is upconverted to the SH and the excess is dif-
fracted.

The experimental setup is shown in Fig. 4. The
sample was heated in an oven to temperatures



higher than 180°C to minimize photorefractive-index
change. The soliton experiment was performed with
a homemade system, operating at Apw=1557 nm,
consisting of a fiber laser producing a 5-MHz train of
bandwidth-limited 9-ps pulses, stretched in a chirped
grating, amplified in a large-core erbium-doped fiber
amplifier, and then recompressed in a bulk compres-
sor to give 4.5 kW of peak power in 7.5-ps-long
pulses. With these pulse characteristics the group-
velocity dispersion does not significantly affect the
pulse propagation in our 7-cm-long sample. The FW
beam was split into two arms. One beam was fre-
quency doubled in periodically poled KTP crystal.
Both the FW and the SH were shaped to match the
waveguide mode profiles, combined, and launched
into a single channel of the array. The output of the
sample was observed with cameras for the FW and
the SH separately and with power detectors.

We actively controlled the relative phase difference
between the FW and the SH with a mirror attached
to a piezo element in the SH arm. To measure the
phase difference changes dynamically, a He—Ne laser
beam was split with one part transmitted in the FW
arm of the input and the other part in the SH arm of
the apparatus. Changes in the interference fringes
from the two He—Ne beams were monitored, trans-
lated into phase changes at 775 nm, and applied to
evaluate changes in the relative phase between the
FW and the SH.

The experimental results for the FW and SH out-
put from the array are shown in Fig. 5. The data for
both the array output and the relative input phase
were taken at 30 frames/s and then processed to pro-
duce the plots of the FW and SH intensities. Note
that there is either a strong or a weak output in the
central channel and essentially no intermediate
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Fig. 4. Experimental setup: MO, microscope objective;
PPLN, periodically poled lithium niobate; Pol, polarizer;
N/2, half-wave plate; PPKTP, periodically poled KTP.
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Fig. 5. Experimental FW (left-hand side) and SH (right-
hand side) output power distribution versus input relative
phase difference for the following input conditions: Ppyw
=400 W, Pgg=7 W, ABL=90.
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states, as predicted theoretically in Fig. 3. For the
case with in-phase FW and SH, a strong central-
channel FW confinement occurs together with a weak
SH component forming the stable, propagating,
highly localized quadratic array soliton. Because of
the pulsed excitation, the soliton is accompanied by
weak remnants of linear diffraction peaks far from
the input waveguide in the pulse wings. In the out-
of-phase case a strong SH is tightly localized to the
central channel accompanied by only a weak FW. All
these results are in good quantitative and qualitative
agreement with the theoretical discussion above. The
remaining small differences between theory and ex-
periment when comparing Figs. 3 and 5, for example,
such as smaller contrast and poorer localization of
the experimental FW, are due to effects such as re-
sidual photorefraction and nonlinear absorption not
included in the model.

We have found that single-channel discrete soli-
tons in weakly coupled quadratically nonlinear wave-
guide arrays are a much richer phenomenon than in
their counterpart Kerr waveguide arrays. This is a
direct consequence of the dual-frequency nature of
the solitons, coupled with the fact that only the FW
fields can undergo discrete diffraction. This has led to
the existence of two output states for a single excited
channel, one in which the FW dominates and the sec-
ond in which the SH dominates. Modeling based on
the discrete coupled-wave equations predicts this be-
havior and indicates that the relative phase between
the FW and the SH at the input determines the out-
put state.
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