
Spectral pulse transformations and
phase transitions in quadratic nonlinear

waveguide arrays

Frank Setzpfandt,1,∗ Andrey A. Sukhorukov,2 Dragomir N. Neshev,2

Roland Schiek,3 Alexander S. Solntsev,2 Raimund Ricken,4 Yoohong
Min,4 Wolfgang Sohler,4 Yuri S. Kivshar,2 and Thomas Pertsch1

1Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena,
Max-Wien-Platz 1, 07743 Jena, Germany

2Nonlinear Physics Centre, RSPE, Australian National University, Canberra, ACT 0200,
Australia

3University of Applied Sciences Regensburg, Prüfeninger Strasse 58, 93049 Regensburg,
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Abstract: We study experimentally and numerically the dynamics of a
recently found topological phase transition for discrete quadratic solitons
with linearly coupled SH waves. We find that, although no stationary states
are excited in the experimental situation, the generic feature of the phase
transition of the SH is preserved. By utilizing simulations of the coupled
mode equations we identify the complex processes leading to the phase
transition involving spatial focusing and the generation of new frequency
components. These distinct signatures of the dynamic phase transition are
also demonstrated experimentally.
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1. Introduction

In the last years, discrete optical systems and especially waveguide arrays (WGAs) have been
an active area of research in optics [1, 2]. Due to their tunable diffraction properties [3, 4],
WGAs are also a very versatile system to explore fundamental questions [5]. Nonlinear WGAs
open new possibilities for optical beam control [6]. Here applications like switching, storing
and routing of optical signals [7–10] are mostly interesting for telecommunications. Series of
studies in recent years were devoted to fundamental aspects of nonlinear beam propagation
in WGAs, especially to the properties of discrete spatial solitons [11]. Solitons are localized
stationary wave packets which can form if the optical nonlinearity cancels the diffraction of
an optical beam. Spatial solitons have been predicted and experimentally verified in 1D and
2D in WGAs with Kerr-nonlinearity [12, 13] and photorefractive nonlinearity [14]. In one-
dimensional WGAs with second order nonlinearity spatial solitons have been also observed
[15]. In these quadratic systems, the nonlinear phase shifts are generated by the parametric
interaction of a fundamental wave (FW) with its second harmonic (SH) [16]. Usually, WGAs
are multimode at the SH wavelength [17]. This creates an additional degree of freedom in these
systems since different SH modes with different properties can be employed to generate phase
shifts. Recently it has been shown, that the strong spatial coupling of higher order SH modes
enables new properties of the spatial solitons, namely a power dependent topological transition
between different spatial profiles of the soliton [18].

To experimentally realize spatial solitons in quadratic waveguide arrays, high optical powers
are necessary. These can be only achieved by the use of short optical pulses. For wide spatial
solitons, the temporal effects induced by short pulses can be mostly neglected [15]. However,
the impact of temporal reshaping becomes more pronounced for strongly localized beams. It
was shown for WGAs in Kerr media that spatio-temporal coupling and reshaping may lead
to the formation of X-waves [19–21] which are fundamentally different from spatial solitons.
In media with second order nonlinearity the role of temporal effects for the excitation of spa-
tial solitons has been discussed for bulk propagation [22, 23]. Moreover, analysis of the SH
dynamics in beams propagating in χ(2)-material showed the excitation of X-waves at the SH
wavelengths from an input FW beam [24–26]. In WGAs with quadratic nonlinearities, highly
localized spatial solitons have been reported [27], but the influence of the pulsed beams has not
been analyzed in detail. Since the soliton phase transition reported in [18] critically depends on
the strong localization of the propagating beams, we expect that temporal effects will have a
profound effect on its experimental realization and the ensuing beam dynamics.

The aim of this paper is to analyze the spatial, temporal and spectral pulse reshaping mech-
anisms leading to the experimentally observed SH phase transition [18]. We first show that the
phase transition of the stationary states indeed exists in the experimental system featuring two
SH modes interacting with the FW. However, in the experimental situation we find a highly
nonstationary behavior still exhibiting the generic phase transition. The dynamics leading to
the power dependent generation of staggered SH involves spatial focusing and generation of
new frequency components.
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In Sec. 2 we first introduce the experimental system under consideration and review the prop-
erties of the soliton phase transition with respect to this particular experimental case. In Sec. 3
we numerically calculate the beam propagation and analyze the reshaping mechanisms leading
to the phase transition. We also identify the distinct features of the pulses, namely the gener-
ation of staggered SH in distinct wavelength regions, which are accessible for measurements.
Our experimental findings are presented in Sec. 4 where we confirm our numerical results by
spatio-spectral measurements probing the spatial and temporal spectrum of the SH. Finally we
will present our conclusions in Sec. 5.

2. Spatial cw soliton phase transition with two SH modes

The experiments showing the soliton phase transition reported in [18] were conducted in peri-
odically poled lithium niobate WGAs [28]. Fig. 1(a) shows the refractive index profile of these
WGAs, which support only one FW mode at wavelengths around 1500 nm. The FW mode can
interact nonlinearly with several SH modes via type I phasematching, where the interaction
strength is controlled by the mode overlap and the wavelength dependent phase mismatch

Δβ j = 2k0
U − k0

V,W +
2π

ΛQPM
, (1)

where ΛQPM is the grating period and we consider the first-order QPM process only. The k0
U and

k0
V,W are the propagation constants of the interacting FW and SH modes in the absence of lin-

ear coupling (corresponding to propagation in an isolated waveguide). The index j denotes the
different nonlinear interactions. The most efficient interaction for a pair of SH and FW modes
is achieved at wavelengths where the respective Δβ j = 0, which can be controlled by the quasi-
phasematching period ΛQPM and the device temperature. A main result in [18] is that the soliton
phase transition is linked to the linear coupling of the participating SH mode to the neighboring

Δβ
1/Δ

β 2

−π π0 −2π 2π0

Δβ
1

Δβ
2

γ
1

γ
2

Fig. 1. (a) Sketch of the lithium niobate sample showing the refractive index profile [28],
the periodic poling and the FW and SH modes. (b) Dependence of the mismatches between
FW00 and SH02 (solid line) and SH10 (dotted) modes on the FW wavelength. (c) Scheme
of the coupling mechanisms of the investigated system. (d) Scheme of the bands of FW
(left) and SH (right).
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waveguides and can not be observed if this linear coupling vanishes. Hence it is mandatory to
use the SH02 mode depicted in Fig. 1(a), which features a linear coupling strength similar to
the FW00 mode. In the used samples a quasi-phasematching period of ΛQPM = 16.803μm is
employed to achieve efficient nonlinear interaction between FW00 and SH02 at an FW wave-
length of approximately 1500 nm. We plot the simulated phase mismatch Δβ1 between the
two modes vs. the FW wavelength in Fig. 1(b). However, in the same wavelength range the
phase mismatch Δβ2 between FW00 and SH10 mode [see mode profile in Fig. 1(a)] becomes
small [29, 30], leading to efficient nonlinear interaction. Hence in our analysis we have to con-
sider a system featuring all the coupling mechanisms shown in Fig. 1(c). The amplitudes Un, Vn

and Wn of the FW00, SH02 and SH10 modes in the nth waveguide are coupled linearly with the
coupling strengths cU , cV , cW to the same modes in the neighboring waveguides. Additionally
the FW component is coupled with the nonlinear coupling strengths γ1 and γ2 to the SH02 and
SH10 modes at the same waveguide where the efficiency of the interaction is controlled by the
phase mismatches Δβ1 and Δβ2. As can be seen in Fig. 1(b), the difference between the phase
mismatches is constant with Δβ1 −Δβ2 = 5π/cm. The linear propagation of the waves in the
WGA is determined by the dependence of the longitudinal wavenumber km on the transverse
wavenumber κm and the propagation constant of the single waveguide k0

m. In the case of small
coupling strengths this dispersion relation can be expressed analytically as

km = k0
m +2cm cos(κm) , (2)

where the index m = {U,V,W} again denotes the band, and the κm are normalized to the array
pitch. Fig. 1(d) shows a scheme of the three bands governing the propagation of the modes
taken into account here.

The nonlinear propagation of cw-waves in the lithium niobate WGA, taking into account one
FW and two SH modes, can be described with the following coupled mode equations for the
mode amplitudes in the waveguides [29, 31]:

i
dUn

dz
+ cU (Un+1 +Un−1)+ωU (γ1Vn + γ2 Wn)U

∗
n = 0 (3)

i
dVn

dz
+ cV (Vn+1 +Vn−1)−Δβ1Vn +ωU γ1U

2
n = 0

i
dWn

dz
+ cW (Wn+1 +Wn−1)−Δβ2Wn +ωU γ2U

2
n = 0.

Here z is the propagation distance and ωU the mean frequency of the FW wave. The phys-
ical coupling constants of the used sample are cU = cV = 80/m and cW = 16/m. These
coupling constants are used for the theoretical analysis as well and are considered constant
in the investigated wavelength range around an FW wavelength of 1500 nm. The power

P = ∑n

(
|Un|2 + |Vn|2 + |Wn|2

)
is conserved during the propagation. Similar to [18] we use

the ansatz Un (z) = U0
n exp(iβ z), Vn (z) = V 0

n exp(2iβ z), Wn (z) = W 0
n exp(2iβ z) to calculate

numerically the stationary solutions of Eqs. (3). Due to nonlinear synchronization, the propa-
gation constant of the stationary solutions is defined for all components by β . This ansatz is
plugged into Eqs. 3 and the ensuing system of nonlinear equations is solved numerically for
propagation constants β < 0 where the stationary solutions show the phase transition [18].

As it is well known from spatial solitons with only one SH component, the FW part of
solutions with β < 0 has phase jumps of π between adjacent waveguides (staggered phase pro-
file) [32]. This is equivalent to a concentration of the FW energy at transverse wavenumbers
of κU = ±π in the periodic spatial spectrum. However, [18] showed that a linearly coupled
SH component switches it’s phase profile at a certain propagation constant from unstaggered to
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Fig. 2. Soliton solutions with (a,d) FW/Un, (b,e) SH02/Vn, and (c,f) SH10/Wn compo-
nents. For all plots, the mismatch is Δβ1 = 0 and the propagation constants are (a,b,c)
β = −200/m and (d,e,f) β = −240/m. The circles show the mode amplitudes and the
shading denotes the phase where white corresponds to a phase of 0 and gray to a phase of
π . The lines connecting the amplitude values are guides to the eye.

staggered. This phase transition of the topology is attributed to the narrowing of the localized
solutions with increasing magnitude of β . In Fig. 2 we plot mode amplitudes and phases of two
solutions which are just below and above this threshold propagation constant for the transition
in the SH02 component. As expected, the FW component [Figs. 2(a,d)] is staggered for both so-
lutions. However, the width of the FW component is slightly smaller for the solution with higher
magnitude of the propagation constant. This small change in the width is enough to trigger the
phase transition in the SH02 component, as can be seen in Fig. 2(e). For β =−200/m the SH02
amplitudes are not staggered because of the broader FW component. For β =−240/m the FW
is narrow enough to allow for the staggered SH02. However, the SH10 component, depicted in
Figs. 2(c,f) is not staggered for both propagation constants due to its smaller linear coupling
constant. For much larger magnitude of β the SH10 component will also undergo the phase
transition (not plotted). Similar result for localized solutions have been obtained in Ref. [33]
where the authors use a continuous ansatz to describe periodic nonlinear systems with several
bands. However, the obtained discrete-type equation and solutions accounted for only one SH
mode.

To summarize this section, we showed that the theoretical results of [18] are still valid in a
system with two SH modes, which corresponds to our experimental case. We found that there
exist separate threshold propagation constants for all participating SH modes, depending on
their linear coupling constants. In the next section we will investigate numerically the effects
of pulsed signals in the generation of staggered SH components.
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3. Pulse dynamics near the phase transition: numerical studies

Pulsed beams have a finite spectral width, hence we have to take the dispersive characteristics
of the propagating modes of the WGAs into account. Accordingly we use the following coupled
mode equations similar to Eqs. (3), but with additional terms accounting for temporal dynamics:

i
dUn

dz
− DU

2
∂ 2Un

∂τ2 + cU (Un+1 +Un−1)+ωU (γ1Vn + γ2 Wn)U
∗
n = 0 (4)

i
dVn

dz
− DV

2
∂ 2Vn

∂τ2 + iδV
∂Vn

∂τ
+ cV (Vn+1 +Vn−1)−Δβ1Vn +ωU γ1U

2
n = 0

i
dWn

dz
− DW

2
∂ 2Wn

∂τ2 + iδW
∂Wn

∂τ
+ cW (Wn+1 +Wn−1)−Δβ2Wn +ωU γ2U

2
n = 0.

Here τ is the time relative to the frame moving with the FW group velocity. The parameters
δV and δW are the differences in the inverse group velocities between the FW mode and the
SH02 and SH10 modes, respectively. Finally, Dm accounts for the group velocity dispersion of
the mode labeled by the index m. Eqs. (4) can be integrated numerically by using the standard
split-step-algorithm [34]. We account for dispersion only up to the second order, because the
shortest temporal features which we observe in our simulations (presented below) have a length
of about 2 ps. However, for much shorter pulses, higher order dispersion may play an important
role [35].

First we analyze the power dependence of the output of the WGA. Similar to the experiment
discussed in Sec. 4 below, we launch an FW pulse with Gaussian shape in space and time
and a temporal (spatial) full-width half-maximum (FWHM) width of 5.3 ps (4 waveguides).

Fig. 3. Numeric simulations of the output intensities after 71 mm propagation for (a,b)
2 kW, (c,d) 5 kW,and (e,f) 7.0 kW FW input peak power for Δβ1 =−4π/cm. (a,c,e) show
the intensities in real space and (b,d,f) show the spatio-temporal spectra for the FW (left),
SH02 (center) and SH10 (right). Media 1 shows the array output intensities for a continuous
scan of the input power.
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The mismatch is set to Δβ1 = −4π/cm, corresponding to an FW wavelength 2.2 nm below
the FW00-SH02 phasematching wavelength. A phase difference of π is introduced between
adjacent waveguides to fulfill the conditions found for the FW part of the stationary solutions.
The output of the WGA after 71 mm of propagation for three different powers is plotted in
Fig. 3 (Media 1), where the amplitude in each panel is normalized to the respective maximum.
Fig. 3(a,b) for an input peak power of 2 kW correspond to the realization of a wide spatial
soliton similar to [15]. Here the spatial width of the FW pulse after 71 mm of propagation is the
same as the input beam width. The pulses of the two SH components, as seen in Fig. 3(a) are
temporally split in two parts, one which travels with the group velocity of the SH and one which
is trapped with the FW pulse [36–38]. The spatio-temporal spectra, plotted in Figs. 3(b), show
that the FW part is localized at transverse wavenumbers of π corresponding to a staggered wave.
However, due to the large spatial width of the FW field the SH is unstaggered and concentrated
at transverse wavenumbers of 0 and 2π . The wavelength scale of the SH components is given
in units of the corresponding FW wavelength.

For an input peak power of 5 kW the output of all three components is focused to almost
only one waveguide [see Fig. 3(c)]. Since the power, and therefore the nonlinear phase shift,
is weaker at the leading and trailing edges of the FW pulse, the focusing is not so pronounced
there. We note that this effect was used in WGAs with Kerr-nonlinearity to excite X-waves [20].
The FW spectrum, shown in Fig. 3(d), is broadened due to effective self-phase modulation.
However, the broadening is not symmetric since the cascaded phase shifts depend on the wave-
length and the FW power shifted to longer wavelengths comes very close to the phasematching
wavelength of the FW00 and SH02 modes at a relative wavelength of 2.2 nm. Hence it is very
effectively transformed into SH. This can be seen in the spatio-temporal spectrum of the SH02
component, where the maximum power is now located at the phasematching wavelength 2.2 nm
above the input FW wavelength. Due to the decreased spatial width of the FW, the SH is now
generated for a broad spectrum of transverse wavenumbers, however the SH02 wave is still
unstaggered at the beam center.

Finally we plot results for an input peak power of 7 kW in Fig. 3(e) and (f). The FW pulse
is again strongly localized and the X-shape is maintained. But whereas the SH10 component
still travels mainly with the FW pulse, the SH02 wave radiates away from the FW pulse and
diffracts. This is a consequence of the very efficient SHG at the phasematching wavelength. The
SH can be kept under the envelope of the FW pulse if it is constantly generated and annihilated
by the cascading process. However, the large amplitude SH02 is phase-matched and traveling
with the same speed as the generating FW wave. Hence it is not subjected to cascading and
propagates with the SH group velocity. Since the SH02 component also couples linearly to ad-
jacent waveguides the SH pulse consequently diffracts. Even though the SH02 is definitely not
part of a stationary state we see in Fig. 3(f) that now staggered SH is generated and the maxi-
mum of the SH02 component is at transverse wavenumbers of κ1 = π . However, the staggered
SH is only generated at the phasematching wavelength of the FW and the SH02 component.
This also leads to the strong asymmetry of the FW spectrum. As can be seen for all simulated
powers, the SH10 does not participate in the generation of staggered SH. This is due to the
larger mismatch and weaker linear inter-waveguide coupling of the SH10, which leads to its
much higher threshold power for the phase transition [18]. For that reason we will not present
the results for the SH10 wave in our analysis of the propagation in the sample. However, the
SH10 component enhances the focusing of the FW wave by providing additional phase shifts.
This leads to a much smaller threshold power for the generation of the staggered SH02 as we
verified by integrating Eqs. (4) with the same input parameters as used up to now and γ2 = 0.

After we identified a power level where staggered SH is generated at the SH02 component
we will explore how this process takes place during the propagation inside the array. Our sim-
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Fig. 4. (a,b) FW and (c,d) SH02 intensities after different propagation lengths for an FW
input peak power of 7 kW and Δβ1 = −4π/cm. (a,c) intensities in real space and (b,d)
spatio-temporal spectra after 20 mm (left), 45 mm (middle), and 60 mm propagation. The
propagation through the sample in steps of 1 mm is also presented in Media 2.

ulations of Eqs. (4) show that for higher powers no spatial soliton is generated. To explore the
propagation dynamics we use the same initial parameters as above for an FW input peak power
of 7 kW and plot the FW and SH02 intensities after different propagation lengths in Fig. 4
(Media 2). We find that initially the FW and the generated SH02 are narrowing. After 20 mm
of propagation the trailing pulse of the SH not retained under the FW pulse is clearly visible.
After 45 mm the pulses, especially the SH, are focused to only one waveguide. The FW spec-
trum [Fig. 4(b)] is broadened and although the asymmetry in the FW spectrum is not visible the
onset of the generation of staggered SH02 can be seen in Fig. 4(d) at the relative SH wavelength
1.1 nm. After 60 mm the maximum of the space-time SH intensity is moving towards the tail
of the FW pulse and the onset of diffraction is visible in Fig. 4(c). Additionally, the tail of the
FW pulse is now focused very strongly. Here the conditions for the generation of staggered SH
states are met and the pulse locally has a similar profile as the calculated stationary solutions.
Hence the SH02 component is primarily generated at transverse wavenumbers of π . This hap-
pens with the largest efficiency at the phasematching wavelength, leading to the asymmetric
shape in the FW spectrum. However, due to the strong localization of the FW, SH intensity is
generated for a large range of transverse wavenumbers. Since the phasematching condition is
only fulfilled for one longitudinal wavenumber, the SH is generated along isolines of it’s disper-
sion relation. For the SH these isolines follow a cosine as defined in Eq. (2). SH states existing
at the isolines of the dispersion relation were referred to as SH X-waves in [24,26]. In [24] also
the SH radiation cone which is supported in it’s origin by the FW is predicted, exactly as we
find it after the last 10 mm of propagation [Fig. 3(e)].

To conclude the section on our simulations, we found that staggered SH is indeed generated
with pulsed excitation of the FW wave only. However, the staggered SH is the result of complex
FW and SH pulse transformations including focusing, frequency shifts and the generation of X-
waves. We do not find a spatio-temporal soliton with staggered SH component but confirm that
the phase transition is a generic effect in nonlinear propagation with linearly coupled SH waves.
In the following we will experimentally prove the results of the simulations by measuring the
characteristic spectral features at the output of our a WGA.
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Fig. 5. Microscope image of the used sample showing the titanium indiffused waveguides
and, indicated by the up- and downward arrow signs, the poling pattern.

4. Experimental measurements

Measurements were performed in a 71 mm long array of waveguides in periodically poled
lithium niobate consisting of 101 waveguides. The waveguides were fabricated by indiffusion
of titanium stripes of 101 nm thickness and 7μm width for 8.5 h at a temperature of 1060 °C
[28]. A microscope image of the sample we use in our experiments is shown in Fig. 5. The
array period of 15μm results in linear coupling strengths of cU = cV = 80/m for the FW and
SH02 modes and cW = 16/m for the SH10 mode. The FW coupling constants are obtained
by measuring the Green’s function of the waveguide arrays [12] whereas we calculate the SH
bands with a freely available software package [39] to determine the SH coupling constants.
The given values have been used already for the calculation of the stationary solutions and in
the simulations in Sec. 2 and Sec. 3 above. To perform our experiments TM-polarized light
from an optical paramatric amplifier is shaped by an elliptical telescope and the resulting focus
of a horizontal (vertical) FWHM of 60 (3) μm is imaged on the front facet of the sample.
To achieve the necessary phase difference of π between adjacent waveguides the input beam
is tilted by off-axis illumination of the coupling objective. This results in an excitation of the
waveguides with a spatial FWHM of 4 waveguides. However, not only the FW00 mode but
also the 2nd FW mode FW01 is weakly excited. The FWHM length of the pulses is 5.3 ps and
the amplifier provides peak powers up to ≈ 12kW with a repetition rate of 5 kHz. To prevent
photorefraction by the generated SH radiation the sample is heated to a temperature of 220 °C.
At this sample temperature the experimentally used FW wavelength of 1499 nm corresponds
to a mismatch between FW00 and SH02 mode of Δβ1 =−4π/cm. This is the same mismatch
as used for the simulations in Sec.3. To measure the output of the WGA we simultaneously
image the output facet onto an InGaAs- and a CCD-camera to record the spatial profiles of the
FW and SH output. To obtain the spatial spectrum of the SH we employ an additional lens in
a 2-f configuration to generate a Fourier transform of the SH output. This is recorded with an
additional CCD-camera.

The power dependence of the time integrated outputs of the WGA measured with this setup
is plotted in Fig. 6 for powers from 1 kW to 10 kW. At the lowest shown power the FW compo-
nent [see Fig. 6(a)] is already narrower than a linear diffracted beam. For increasing power the
spatial width further decreases until the maximal focusing is reached at an input peak power
of 2 kW. However, in contrast to the simulations the FW is not focused to only one waveg-
uide. Instead the width of the FW beam at 2 kW corresponds to the width of the coupled input
distribution. Hence at this power we excite a wide spatial soliton, in agreement with [40] and
Fig. 3(a). For even higher power the FW beam broadens again. The width of the SH component
in Fig. 6(b) is minimal at a power of approximately 6 kW which is in accordance with the sim-
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Fig. 6. Power dependence of the time integrated spatial intensity profiles at the array output.
(a) FW and (b) combined SH intensities vs. power for an FW input wavelength of 1499 nm
corresponding to a mismatch of Δβ1 = −4π/cm. (c) Corresponding power dependence
of the SH spatial Fourier spectrum. The white dotted lines mark the power levels where
spectrally resolved measurements are conducted.

ulation results. This corresponds to the power where staggered SH is measured at a transverse
wavenumber of π [see Fig. 6(c)]. The discrepancies between simulation and measurement may
be induced by the waveguide inhomogeneities and the SH induced photorefractive effects. We
also note that the rectangular QPM grating [visible in Fig. 5] can fascilitate higher-order cas-
caded interactions which can act as effective cubic nonlinearity [41] in addition to first-order
quadratic cascading interaction considered in the derivation of Eqs. (3) [see also Eq. (1)]. The
effective cubic nonlinearity can significantly affect the FW beam dynamics for vanishing phase
mismatch [42]. Hence the spectral components of the FW close to phase-matching, which are
subject to the effective cubic nonlinearities, can be one of the reasons for the deviations of the
measurement results from the simulations. We performed additional numerical simulations to
fully accound for QPM-induced features and found that effective higher-order effects are very
sensitive to QPM inhomogeneities and to the boundary conditions, i.e. the relative length of
the first QPM period, and these preliminary results call for a separate study of QPM effects in
waveguide arrays which is beyond the scope of this manuscript.

As was reported in [18] the power threshold for the generation of staggered SH predicted by

π/Λ

Fig. 7. Experimentally measured spectrally resolved spatial SH Fourier spectra for an FW
input wavelength of 1499 nm (Δβ1 =−4π/cm) and an FW input power of (a) 0.1 kW, (b)
2.5 kW, and (c) 9 kW. (d) SH spatial spectrum for the wavelengths 749.5 nm (blue solid
line), 751 nm (green dashed) and 752.8 nm (red dash-dotted) at a power of 9 kW. The
dotted lines in (c) correspond to the wavelengths plotted in (d) according to the labels.
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the simulation is confirmed by the time integrated measurements. However, to prove the spatio-
temporal mechanism for the generation of staggered SH the integrated measurements are not
sufficient. Due to the integration the information on the spectral structure of the generated stag-
gered SH is lost. The unique feature of the generation mechanism is that staggered SH is not
generated at a wavelength corresponding to the input FW but at the phasematching wavelength
between FW00 and SH02. To show this experimentally we replace the CCD camera measuring
the SH spatial spectrum by an imaging spectrograph. This enables us to measure a wavelength
resolved spatial SH spectrum for a fixed input peak power. Results for three different peak pow-
ers are shown in Fig. 7(a-c). For a peak power of 0.1 kW the SH is generated exclusively at
749.5 nm which corresponds to our input FW wavelength of 1499 nm. The maximum of the SH
intensity is localized at transverse wavenumbers of 0 and 2π , no staggered SH is generated dur-
ing the propagation. Fig. 7(b) shows results for an input peak power of 2.5 kW, which is slightly
larger than power of strongest focusing of the FW component [see Fig. 6(a)]. Here SH is not
only detected at 749.5 nm but also at wavelengths of approximately 750.8 nm and 752.3 nm.
These wavelengths are ≈ 0.5nm larger than the expected phasematching wavelengths to the
SH02 and SH10 modes which we measured independently with a low power cw FW input
beam. However, it was shown before in a single waveguide that, due to cascading, the phase-
matching wavelengths shift to higher wavelengths with increasing input power [29]. Hence this
SH power can be attributed to phasematching to the two SH modes. Although we did not detect
staggered SH in the time integrated measurements for this input power, the maximum of the SH
generated at the phasematching wavelengths is clearly at transverse wavenumbers of π for both
SH modes. The power of the staggered components is just too weak to be detected in the inte-
grated measurements shown above. Finally we show a measurement result for a power of 9 kW
in Fig. 7(c). Here we now see strong staggered SH components generated at both SH modes,
where the maxima are shifted further towards longer wavelengths. To emphasize that the main
contribution to the staggered SH indeed is generated at the phasematching wavelengths we inte-
grate the SH intensity of Fig. 7(c) over spectral domains centered at the (shifted) phasematching
wavelengths with a spectral width corresponding to the spectral width of the input pulse. The
central wavelengths are indicated by the dotted white lines in Fig. 7(c). The normalized result is
plotted in Fig. 7(d). It shows that the SH intensity maximum at the phasematching wavelengths
of 751 nm for the SH20 and 752.3 nm for the SH10 is at a wavenumber of π . In contrast, the
maximum intensity is at 0,2π for the SH generated at 749.5 nm, corresponding to half of the
input FW wavelength.

The results shown in Fig. 7 support the conclusions drawn from the numerical simulations
by confirming the key mechanism of staggered SH generation. It is only generated after the
FW focusing takes place and the staggered components stem from spectral components at the
phasematching wavelengths. However, our measurements also show some differences. Most
notably, a weak staggered SH appears at lower powers than in the simulations which was not
detectable in the time integrated measurements.

This difference can be explained by the action of other FW-SH interactions not taken into ac-
count in the simulations. A spectrum of the SH output integrated over all transverse wavenum-
bers, shown on Fig. 8, suggests that SH is also generated at the phasematching wavelengths
of the FW00 mode with the SH00 mode (778 nm). Additionally we excite the higher order
FW01 mode and we detect SH power at 746 nm which may be explained by phasematching
of the FW00 and FW01 modes to the SH11 mode. All these interactions will create additional
phase shifts not accounted for in the simulations which will influence the power threshold of
the dynamic phase transition.

Another feature measured in the experiment is that not only the SH02 takes part in the phase
transition like in the simulations but also spectral components at the FW00-SH10 phasematch-
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Fig. 8. SH output spectrum for an FW input wavelength of 1499 nm (Δβ1 =−4π/cm) and
an input peak power of 2.5 kW. The labels denote maxima in the spectrum corresponding
to phasematching with the indicated SH modes. The inset shows the power dependence of
the spectral band indicated by the gray background.

ing wavelength are staggered. This may be a sign that the coupled mode equations, which are
valid for weakly coupled independent bands, have certain limitations for the description of our
system due to interactions between the SH bands, leading to changes in the cosine-shape of the
bands. We calculated the SH bandstructures using the plane-wave-expansion method with the
simulated profile of the index of refraction of the WGA and found no evidence for a failure of
the model. However, at higher power the bands may be deformed, leading to the shift of the
phasematching wavelengths shown in the inset of Fig. 8. At 2 kW input power the phasemach-
ing wavelengths are already significantly shifted, hence potential band deformations already
affect the nonlinear interactions. This may explain the measurement in Fig. 7(b) showing stag-
gered SH at the SH10 mode already at 2.5 kW input power.

5. Conclusion

We investigated, both theoretically and experimentally, the influence of the temporal and spec-
tral extent of pulsed beams on the topological soliton phase transition reported in [18]. Par-
ticularly we analyzed the influence of the existence of two SH components and especially the
impact of pulsed excitation with FW light only. First we show that the phase transition still takes
place in the stationary localized solutions of the system with two SH components. We found
different threshold propagation constants for the two SH components, due to different linear
coupling and mismatches. This was confirmed by simulations of pulsed propagation, where we
found that only the SH02 mode plays a role in the generation of staggered SH components.
Indeed the transition from unstaggered to staggered SH output happens for the strongest spatial
focusing of all waves as was found in [18]. However, the simulations revealed that no stationary
states are excited. Conversely, the generation of pulsed staggered SH is a highly non-stationary
process involving spatial focusing and frequency shifts. We find that staggered SH02 compo-
nents are generated exclusively at the phasematching wavelength between FW00 and SH02
modes, independent from the FW input wavelength. The FW is first shifted in wavelength by
cascaded self-phase modulation and then efficiently transferred to SH. The resulting staggered
SH pulse resembles an SH X-wave [24].

This mechanism was proved also experimentally by measurements resolving both the tempo-
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ral and spatial spectrum of the SH output of a lithium niobate WGA. We find that staggered SH
is generated at the phasematching wavelengths to the SH modes only. However, in contrast to
the simulation, both SH02 and SH10 modes contribute to the generation of staggered SH. This
is attributed to nonlinear interactions with other modes not taken into account in the simulations
and to changes in the properties of the bands of the WGA due to strong nonlinear interactions.

Acknowledgments

The authors acknowledge support by the Australian Academy of Science and the International
Bureau of the Federal Ministry of Education and Research in Germany under the Australia-
Germany Researcher Mobility Call 2010-2011, the Go8-DAAD (Australia-Germany Joint Re-
search Co-operation Scheme), the German Research Foundation (NanoGuide), the Federal
Ministry of Education and Research (PhoNa), and the Thuringian Ministry of Education, Sci-
ence and Culture (MeMa).

#153927 - $15.00 USD Received 7 Sep 2011; revised 16 Oct 2011; accepted 20 Oct 2011; published 1 Nov 2011
(C) 2011 OSA 7 November 2011 / Vol. 19,  No. 23 / OPTICS EXPRESS  23201




