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Classical Lagrangian without a magnetic field

In the absence of a magnetic field, the classical equation of movement of a point
particle is given by the second Newton’s law:

dr & ;. ol oU oU
m—-=-VU (&mi=—-—— my=—— mzi=—-——) (8.5)
dt” ox oy 0z

The Lagrangian is defined as L=T-U, where T=mv’/2 is the kinetic energy and U
is the potential energy. We easily verify that the laws of motion written above are
identical to (g;=x,y,2):

3 0
b (8.6)
dt 0q, 0Ogq,

which are the Lagrangian equations of motion. With a magnetic field B the law of
motion for a particle with charge g is

m d_’: :q[é —CQAE) (8.7)
dt” dt

It is somewhat tedious but not conceptually difficult to show that the Lagrangian
law of motion equation (8.6) is still identical to the equation above if the Lagrangian
function is now [COH 77]

1. (&) &~
fen e (8.8)
2"{dzj i

where A is the vector potential (B=V x 4).
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Phase shift due to a magnetic field

With a magnetic field the contribution of the vector potential to the action
integrated over a particular path is that of the second term in equation (8.8). From
equations (8.4) and (8.8) the time can be eliminated and we immediately obtain

AS,,z—ef)%;la’r:—eLZdT (89)
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The contribution of the vector potential to the action along a path /" thus has a
particularly simple form, since it is proportional to the circulation of the vector
potential along that path. It is worth noting that in the case of a closed orbit, we can
turn this circulation into the magnetic field flux by applying Stoke’s theorem, which
states that the circulation of a vector around a closed orbit is equal to the flux of the
rotational through the corresponding oriented surface. Thus, the probability
amplitude phase shift due to a given trajectory around a closed orbit is (see equation
(8.9))

Agoz—E Adl ==
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Although in a mesoscopic structure the magnetic field is applied to the whole
substrate containing the mescoscopic samples, so that such devices cannot really be
used to demonstrate the action of a vector potential in areas where the magnetic field
is absent, a phenomenon like the Aharonov-Bohm effect can be observed. Submit a
mesoscopic, coherent semiconductor ring to a magnetic field B applied
perpendicularly to the plane of the ring, as illustrated by Figure 8.1.

Path 1

-t B

Path 2

Figure 8.1. A coherent semiconductor or metal ring submitted to a magnetic field
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Aharonov-Bohm effect in mesoscopic rings

The probability amplitudes passing through both arms of one 1D channel are
complex numbers which can be written as

(o8- 08) o of) _
f1=;/Tw - y=yThe' g (8.11)

where ¢,” and ¢,” are the phase shifts which would be obtained without a magnetic
field (resulting, e.g., from the action of scatterers in the two arms and from wave
propagation along paths 1 and B), and 7, and 7, are the transmission probabilities
from the two arms, respectively. ¢, and ¢, are the phase shifts induced by the
vector potential as expressed by equation (8.9).

According to the results obtained in the previous section, the phase shift
difference between the two arms which is due to the action of the vector potential is
simply

- - eB ()
o —pr 25 G :Q:ZE——. (8.12)

h ing h )] 5

where @, is the elementary flux quantum

D, =—. (8.13)
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As justified in Chapter 5, we shall assume that the conditions are such that the
overall transmission probability is proportional to the modulus of the sum of the
complex probability amplitudes in each of the two arms, and to simplify the matter
even further we shall only take the sum without explicitly considering any
proportionality factor. Therefore, transmission is equal to

"

T=|t+t,

=T, +T, +2T,T, cos (p"+27z§ : (8.14)

0

Applying the Landauer formula to the ring thus gives a conductance

22 ()] ;
G:% T, +T, cos g00+27r— y (8.15)

0/,

where @=¢,"-¢,". The oscillatory term is due to the magnetic-field induced
interference between the two arms; it can be periodically varied simply by sweeping
the magnetic field. Thus, with such a solid-state device we can realize a quantum-
mechanical interference experiment “just” by using the device at low temperature
and measuring the current as a function of magnetic field. We must obtain
oscillations with a universal period, depending only on the elementary flux quantum.
Note that we only calculated the contribution arising from probability amplitudes
corresponding to a direct transmission, but rigorously we should also take into
account the possibility for an electron to travel over one full orbit before being
transmitted, or to travel over two orbits, etc. The higher the overall transmission, the
larger multiple scattering inside the ring and the more pronounced this effect will be.
If the coherence length A4 is large enough, we can thus observe additional
oscillations with periodicity @y/N, with N integer, due to paths where the particle

travels over more than one circular orbit.
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Yet another surprising point: from equation (8.15) it would seem that the phase
@p can take any arbitrary value. However, this is in fact not the case. Since we have
a two-terminal device in the linear operation regime, it is obvious that if we reverse
the sign of the small voltage that we apply to measure the conductance, the current
magnitude is conserved even with an applied magnetic field, so that the squared
modulus of the transmission probability obeys | t;5(B) | 2 l 131(3)| ’ However, if we
now apply the reciprocity relation we can write for the second term #,;(B)=t,,(-B), so
that G(B)=G(-B). Thus, the conductance of a two-terminal device is an even
function of the magnetic field. However, if we take this into account, from equation
(8.15) it is easy to find that this implies the striking result g,=nz. The phase is
“rigid”, equal to zero or m, not depending on device geometry! A more correct two-
terminal formula is thus

: @ A
Gzz% T, +T,cos| nw+2m— | |- (8.16)

0

The only phase changes that can be observed, e.g., by varying the Fermi level
position are abrupt and equal to = [YAC 96]. Note that this reasoning does not apply
to more than two contacts, because if we have more terminals then the overall
current conservation does not imply that t,(B)=t.,(B) (consider a three-terminal
device such as in Figure 3.22 in the quantum Hall effect regime: we obviously have
T3(B)#0 whereas T3(B)=0).
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Aharonov-Bohm effect in the real world

Power (a.u.)

Figure 8.2. (a)AF M image of an GaAs-GaAlAs heterostructure used to measure
(b) Aharanov-Bohm oscillations; the dashed circle in (a) is calculated from
the power spectrum (c) (T=25 mK); reprinted with permission from [KEY 02],
copyright (2002) by IOP Publishing Ltd
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Schematischer Aufbau eines Aharonov-Bohm Effekt
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T(d+n-dg) =7T(¢), with n integer.
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Aharonov-Bohm und Aharonov-Casher Effekt

(a) (b) Fig. 14.3 Schematic illustration of the
@ A settings for the Aharonov-Bohm ef-
fect and its electromagnetic dual, the
i Aharonov—Casher effect. (a) In case of

L the Aharonov-Bohm effect a charged

i —e g L particle (e.g., charge —|e|) is encircling
Q Q a magnetic flux tube enclosing the flux
3 ¢. (b) In case of the Aharonov-Casher
effect, an uncharged particle with a
magnetic moment (spin) is encircling a

tube of constant line charge density A.
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Aharonov-Bohm Effekt in einem Quantum Ring
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Fig. 14.6 Aharonov-Bohm effect in
the quantum ring structure shown in
Fig. 6.15(a).
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Altshuler-Aranov-Spivak Oszillationen in einem Metallzylinder
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3 (Reprinted with permission from
< Sharvin and Sharvin, 1981. Copyright
: 1981, American Institute of Physics.)
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Aharonov-Bohm Experiment
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Fig. 14.8 Paths considered for the de-
scription of the Aharonov-Bohm ex

periment in a quantum ring structure. 2
(a) The electron is reflected at the en- R = \1'() + ]'1('-5'1‘3""(""’"“"” s ]'](""'2"‘—""/"’7’” !
trance to the ring. (b) The electron
is reflected after having explored the = i’.l'”|2 1= 2\'!'1 ;.—)
ring once in a clockwise direction. (c¢) &
The electron is reflected after having +4 !"Ul 1 ’ cos O cos (_27 .' > L A
explored the ring once in a counter ®0
clockwise direction. : 9 0]
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Aharonov-Bohm Oszillationen
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Temperaturabhangiger Magnetowiderstand eines Quantumrings
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Fig. 14.10 Temperature dependence
of the magnetoresistance of a quantum
ring.

Niederdimensionale HL-Systeme -2 17

e DJAs SRS,




Optoelectronic
Ay
AN

'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft Materials & Devices

Temperaturabhangige Amplitude A
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Fig. 14.11 Temperature dependence
of the amplitude A of h/e- and h/2e-
periodic oscillations as determined from
a Fourier analysis of the data in
Fig. 14.10.
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