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Abstract. The generation of heralded pure Fock states via spontaneous
parametric down-conversion (PDC) relies on perfect photon-number correlations
in the output modes. Correlations in any other degree of freedom, however,
degrade the purity of the heralded state. In this paper, we investigate spectral
entanglement between the two output modes of a periodically poled waveguide.
With the intent of generating heralded one- and two-photon Fock states, we
expand the output state of the PDC to second order in photon number. We explore
the effects of spectral filtering and inefficient detection, of the heralding mode, on
the count rate, g(2), and purity of the heralded state, as well as the fidelity between
the resulting state and an ideal Fock state. We find that filtering can decrease
spectral correlations, however, at the expense of the count rate and increased
photon-number mixedness in the heralded output state. As a physical example,
we model a type II PP-KTP waveguide pumped by lasers at wavelengths of
400 nm, 788 nm and 1.93µm. The latter two allow the fulfillment of extended
phase-matching conditions in an attempt to eliminate spectral correlations in the
PDC output state without the use of filtering; however, we find that, even in these
cases, some filtering is needed to achieve states of very high purity.
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1. Introduction

Pure photon Fock states, in particular single-photon states, are useful for many quantum-optical
applications, including quantum information processing, quantum computing and quantum
cryptography [1, 2]. Some novel uses for photon-number states include the generation of other
non-Gaussian states, such as Schrödinger kitten states [3, 4].

A common method for creating single-photon states makes use of spontaneous parametric
down conversion (SPDC), where a CW or pulsed laser is used to pump a nonlinear crystal. Due
to the nonlinear properties of such a crystal, photons in the pump laser are spontaneously down
converted into pairs of lower energy photons. Typically, the down-converted photons are devised
to be in orthogonal polarization or spatially orthogonal modes. The detection of a single photon
in one mode (idler) heralds the presence of another single photon in the other mode (signal). In
practice, however, given high enough pump power, the presence of higher order photon-number
terms in the output state can lead to a photon-number mixed state in the signal mode, when
inefficient detectors mistake two (or more) photons for one.

Energy conservation ensures that the frequencies of the down-converted photons always
sum to the pump frequency. For CW pumped PDC, these correlations cannot be avoided,
but pulsed pump light allows this constraint to be weakened. Strong spectral correlations are
another potential source of mixedness—the signal state is projected into a spectrally mixed
state when a frequency-insensitive detector heralds a single photon in the signal mode. In
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the context of single-mode versus multi-mode descriptions [5, 6] this property can also be
interpreted as projecting the single photon onto different distinguishable broadband spectral
modes [7]. In recent years, there has been a growing effort in engineering pulsed SPDC sources
to produce photons uncorrelated in frequency, i.e. those with a separable joint spectral amplitude
(JSA). Some examples include manipulating the crystal length, material, bandwidth and central
frequency [7–16] as well as filtering the pump field, prior to down-conversion, using an optical
cavity [17]. Another promising technique produces a source of counter-propagating photons
with a separable JSA [18].

Typical theoretical analyses of multi-mode effects in PDC truncate the output state to
first order in photon number. In this paper, we will extend our analysis to include second-
order photon-number contributions. We will compare the more humble method of pre-detection
filtering, of which the main shortcoming is the loss in the production rate, with a more
experimentally challenging approach where the JSA is made as separable as possible by
satisfying various phase-matching conditions. We find that even if these conditions are fulfilled,
some level of filtering is still required in order to achieve states with very high purities. For
both methods, we characterize the effects of higher order photon-number contributions on the
generation of single-photon states. In addition, we consider the production of two-photon Fock
states, conditional on the detection of two photons in the idler mode.

As a practical example, we consider a periodically poled KTP (PP-KTP) wave guide—this
eliminates any spatial correlations—pumped by ultrafast optical pulses to ensure that the pairs
exhibit tight localizations in time.

This paper is structured as follows. In section 2, we introduce spectral notation for photon
states as well as a theoretical model of spectral effects in SPDC. In section 3, we introduce
spectral filtering. In section 4, we present analytical results for the probability of detecting a
single photon in the heralding detector, the heralded output state, its g(2) and purity, as well as
the maximum fidelity between the heralded output state and an ideal pure state. In section 5,
we present similar results for the generation of two-photon Fock states. In sections 6 and 7, we
illustrate these results using realistic parameters. In section 8, we discuss our results.

Finally, a note on nomenclature. In our theoretical calculations, we have a preference for
using frequency (as opposed to wavelength) due to its direct relationship to energy conservation
in SPDC; however, we have made an attempt to also present our results in nanometers (nm), for
readers who are accustomed to ‘thinking in wavelengths’. All frequencies quoted in this paper
are angular frequencies in units of s−1. When describing Gaussian filters and beam profiles, we
will specify the central frequency and Gaussian standard deviation in s−1 as well as the central
wavelength and the full-width at half-maximum (FWHM) in nm.

2. PDC

Ignoring spectral properties, PDC can be modelled in the interaction picture, where the evolution
of the state vector is given by [19]

|ψ(t)〉 = exp
(
κt
(

â†
i â†

s − âiâs

))
|ψ(t0)〉. (1)
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This gives the output of a PDC4, in the number basis, as

|ψout〉 =
1

cosh(κt)

∞∑
n=0

tanh(κt)n|n〉i|n〉s, (2)

where κ is the effective nonlinearity and is a function of the pump power and the properties
of the nonlinear crystal, and t is the interaction time. The output state is correlated in photon
number.

To take the spectral properties of the system into consideration, we define the creation
operator for a photon with a spectral distribution ψ(ω) as [6, 20]

Â†
ψ =

∫
dωψ(ω)â†(ω). (3)

Â†
ψ satisfies all the standard bosonic commutation relations, such as [ Âψk , Â†

ψk′
] = δk,k′ , where

ψk(ω) and ψk′(ω) are orthogonal spectral functions, i.e.
∫
ψk(ω)ψk′(ω) dω = δk,k′ . In this paper,

all integration limits over angular frequencies are taken to be 0 and ∞; however, in the interest
of compactness, we will not label these explicitly. An n-photon state can be written as

|n;ψ〉 =
1

√
n!

(
Â†
ψ

)n
|0〉. (4)

We emphasize the distinction between the states Â†
ψk

Â†
ψk

=
√

2|2;ψk〉 and Â†
ψk

Â†
ψk′

=

|1;ψk〉|1;ψk′〉 for k 6= k ′, where the former is a two-photon Fock state and the latter consists
of two single-photon Fock states.

For type-II down-conversion, where the pump is non-depleting, i.e. classical, we can take
the multimode Hamiltonian to be [21]

H(t)=

∫
V

d3r χ (2)E (+)
p (r, t)Ê (−)

i (r, t)Ê (−)
s (r, t)+ h.c., (5)

where V is the spatial mode volume in the waveguide and Ê j(r, t)= Ê (+)
j (r, t)+ Ê (−)

j (r, t)
are the three interacting fields with j = p, i, s denoting the pump, idler and signal modes,
respectively.

E (+)
p (z, t)= Ap

∫
dωp α(ωp)e

i[kp(ωp)z+ωpt], (6)

Ê (−)

j (z, t)=

∫
dω j A(ω j)â

†(ω j)e
−i[k j (ω j )z+ω j t], (7)

where α(ωp)= exp(−(ωp −µp)
2/2σ 2

p ) is the pump envelope function and we have restricted
the spatial integral to be over only one dimension, i.e. z, and j = i, s. This Hamiltonian does
not commute with itself at different times and therefore the evolution of the state vector should
be taken to be

|ψ(t)〉 = U(t)|ψ(t0)〉 = T e−i/h̄
∫ t

t0
dt ′ H(t ′)

|ψ(t0)〉, (8)

where T is the time-ordering operator. U(t) can be expanded into what is known as the Dyson
series. This is very challenging, and, as an approximation, we will drop the time-ordering
operator and expand U(t) as a Taylor series. The disparity between the Dyson and Taylor series

4 Note that a PDC state of one spatiospectral mode is exactly equivalent to a two-mode squeezed beam.
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subsides for longer waveguides and initial calculations suggest that the Taylor series is a good
approximation for the waveguide lengths considered in this paper. The effect of the Dyson
series, when considering input states of a quantum nature, has been investigated by Leung
et al [22]. A description of multiple pair creation in degenerate SPDC has also been analysed in
the Heisenberg picture by Wasilewski et al [23] and Mauerer [24].

We will assume that A(ω j) is slowly varying over the frequencies of interest and therefore
we can bring it outside the integral. We can now write∫ t

t0

dt ′H(t ′)= A
∫

∞

−∞

dt ′

∫ L/2

−L/2
dz
∫

dωi dωs dωp e−i[ki (ωi)+ks(ωs)−kp(ωp)]z

× ei[ωi+ωs−ωp]tα(ωp)â
†
i (ωi)â

†
s (ωs)+ h.c., (9)

where L is the length of the crystal and A = χ (2)Ap A(ωi)A(ωs). For a pulsed laser, we can
assume that the pump field, and therefore the interaction Hamiltonian, is zero before t0 and
after t . Therefore, we can extend the limits of the integration over time to −∞ and ∞ [25].
Performing the time integral yields 2πδ(ωi +ωs −ωp), which then allows the ωp integral to be
evaluated, giving∫ t

t0

dt ′H(t ′)= − 2πA
∫ L/2

−L/2
dz
∫

dωi dωs â†
i (ωi)â

†
s (ωs)

×α(ωi +ωs)e
−i[ki(ωi)+ks(ωs)−kp(ωi+ωs)]z + h.c. (10)

Evaluating the integral over z yields∫ t

t0

dt ′H(t ′)= 2πAL
∫

dωi dωs â†
i (ωi)â

†
s (ωs)α(ωi +ωs)8(ωi, ωs)+ h.c., (11)

where 8(ωi, ωs) is the phase-matching function

8(ωi, ωs)= sinc
(L1k

2

)
, (12)

where sinc(x)= sin(x)/x and 1k = ki(ωi)+ ks(ωs)− kp(ωi +ωs). For a periodically poled
waveguide of periodicity 3, 1k = ki(ωi)+ ks(ωs)− kp(ωi +ωs)+ 2π/3 [26]. Note that by
picking the spatial integration to be centred on z = 0, it is possible to eliminate a phase term that
would normally be present in equation (11). In an experiment, this corresponds to pre-chirping
the pump pulse with an adapted phase progression.

Following Grice and Walmsley [21], we Taylor expand the phase mismatch to first order
such that 1k ≈1k(0) + k ′

sνs + k ′

iνi − k ′

pνp, where ν j = ω j −µ j , k ′

j = ∂k j(ω)/∂ω|ω=µ j and µ j is
the centre frequency of a photon in mode j . We set µi = µs = µ and µp = 2µ. We can achieve
perfect phase matching by picking 3 such that 1k(0) = ks(µs)+ ki(µi)− kp(µp)= 2π/3 and
therefore 1k ≈ k ′

sνs + k ′

iνi − k ′

pνp.
To consider contributions from the two-photon components of the down-converted state,

we take the Taylor series expansion of the unitary evolution operator in equation (8) to second
order (disregarding the time-ordering operator):

U(t)≈ 1 +
1

ih̄

∫ t

t0

dt1 H(t1)+
1

2(ih̄)2

∫ t

t0

dt2 H(t2)

∫ t

t0

dt3 H(t3). (13)
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This gives the truncated downconverted state

|ψPDC〉 = N
{
(1 +χ2)|0〉 +χ

∫∫
dωi dωs f (ωi, ωs)â

†
i (ωi)â

†
s (ωs)|0〉

+
χ2

2

∫ ∫
dωi dωs f (ωi, ωs)â

†
i (ωi)â

†
s (ωs)

×

∫∫
dω′

i dω′

s f (ω′

i, ω
′

s)â
†
i (ω

′

i)â
†
s (ω

′

s)|0〉

}
, (14)

where χ = 2π AL/ih̄ and N is defined in equation (18). The JSA is given by

f (ωi, ωs)= Nfα(ωi +ωs)8(ωi, ωs), (15)

where the normalization parameter Nf is chosen such that
∫
dωi dωs | f (ωi, ωs)|

2
= 1.

Any well-behaved complex function can always be decomposed in terms of a discrete
basis of orthonormal functions (a well-known example is the basis of Hermite functions). This
is known as the Schmidt decomposition.

f (ωs, ωi)=

∑
k

bkξk(ωi)ζk(ωs), (16)

where the Schmidt modes ξk(ωi) and ζk(ωs) are normalized and may be complex and the
Schmidt coefficients bk are real and

∑
k |bk|

2
= 1 if f (ωs, ωi) is normalized. It is useful to write

the down-converted state in terms of the Schmidt decomposition (refer to table 1 for creation
operator definitions).

|ψPDC〉 = N

{
(1 +χ2)|0〉 +χ

∑
k

bk Â†
iξk

Â†
sζk

|0〉 +
χ 2

2

∑
k,k′

bkbk′ Â†
iξk

Â†
iξk′

Â†
sζk

Â†
sζk′

|0〉

}
, (17)

where ξk(ωi) are the Schmidt modes for the idler state and ζk(ωs) are the Schmidt modes for the
signal state and

N =

|1 +χ2
|
2 + |χ |

2 + |χ |
4

 ∑
k, k′

k<k′

|bkbk′|
2 +
∑

k

|bk|
4




−1/2

. (18)

Note that, in the four-photon term of equation (17), when two photons are created in the same
spectral mode (i.e. k = k ′), there will be a factor of

√
2 in front of each two-photon Fock state,

increasing the probability of down-conversion into such a state. This can be understood due to
stimulation effects in the PDC process itself. Equation (17) can also be written as

|ψPDC〉 = N

(1 +χ2)|0〉 +χ
∑

k

bk|1; ξk〉i|1; ζk〉s +χ2

∑
k

b2
k |2; ξk〉i|2; ζk〉s

+
∑
k, k′

k<k′

bkbk′|1; ξk〉i|1; ξk′〉i|1; ζk〉s|1; ζk′〉s


 . (19)
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Table 1. Summary of multi-mode creation operators, spectral modes and states,
some of which will be introduced in subsequent sections.

Creation Spectral State Description
operator mode

Â†
iζk

ζk(ωi) |1; ζk〉i Initial idler Schmidt modes

Â†
sξk

ξk(ωs) |1; ξk〉s Initial signal Schmidt modes

Ĉ†
Tζk

T (ωi)ζk(ωi) |1; T ζk〉i Filtered idler modes
D̂†

Rζk
R(ωi)ζk(ωi) |1; Rζk〉i Reflected filtered idler modes

Ĉ†
φ j

φ j (ωi) |1;φ j 〉i Orthog. filtered idler modes

D̂†
ϕ j

ϕ j (ωi) |1;ϕ j 〉i Orthog. reflected filtered idler modes

Â†
iτk

τm(ωs) |1; τm〉s Diag. single-photon signal modes

We can characterize the spectral entanglement of the JSA by using the entropy of
entanglement [27]. The entropy of entanglement can be defined, for the bipartite state

|9〉 =

∑
k

bk|1; ξk〉|1; ζk〉, (20)

in terms of the Schmidt values:

E(|9〉)= −

∑
k

b2
k log2(b

2
k). (21)

The entropy of entanglement is valid only for pure bipartite states and, when defined in terms
of the Schmidt decomposition, cannot be applied to the entire output state in equation (19).
However, we can apply it to the two-photon term to get some information about the spectral
entanglement arising only from the JSA. The entropy of entanglement ranges from zero for a
product state to log2 N for a maximally entangled state of two N -state particles, which in our
case corresponds to a state containing N orthogonal spectral modes. In the limit of a maximally
entangled JSA, the entropy of entanglement would approach ∞.

3. Spectral filtering

A spectral filter can be modeled as a frequency-dependent beamsplitter:

â†(ω)→ T̃ (ω)ĉ†(ω)+ R̃(ω)d̂†(ω), (22)

where |T̃ (ω)|2 and |R̃(ω)|2 are the transmitted and reflected probabilities and |T̃ (ω)|2 +
|R̃(ω)|2 = 1. In addition to the filter, we consider an inefficient detector that we model by a
beamsplitter of reflectivity 1 − η, followed by a perfect detector (refer to figure 1 in section 4). If
the reflected mode of the filter and the reflected mode of the beamsplitter are to be traced out, the
filter–beamsplitter combination can be modelled by a filter with the following transformation:

â†(ω)→ T (ω)ĉ†(ω)+ R(ω)d̂†(ω), (23)

where T (ω)= T̃ (ω)
√
η and R(ω)=

√
1 − |T̃ (ω)|2η. In terms of the mode functions ζk , this can

be written as

Â†
ζk

→ Tζk Ĉ
†
T ζk

+ Rζk D̂†
Rζk
, (24)
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where we have defined

Tζk =

√∫
dω |T (ω)ζk(ω)|2, (25)

Rζk =

√∫
dω |R(ω)ζk(ω)|2, (26)

Ĉ†
T ζk

=
1

Tζk

∫
dω T (ω)ζk(ω)ĉ

†(ω), (27)

D̂†
Rζk

=
1

Rζk

∫
dω R(ω)ζk(ω)d̂

†(ω). (28)

The definitions in equations (25)–(28) ensure that the creation operators for the filtered modes
satisfy the commutation relations [ĈT ζk , Ĉ†

Tζk
] = 1 and [D̂Rζk , D̂†

Rζk
] = 1. However, the filtered

functions T ζk(ωs) no longer define proper modes because the functions ζk(ωs)T (ωs) are, in
general, not orthogonal to the functions ζk′(ωs)T (ωs) for k 6= k ′ and therefore need to be
orthogonalized (e.g. using the Gram–Schmidt procedure) such that

Tζk Ĉ
†
Tζk

|0〉 =

∑
j

uk j Ĉ
†
φ j

|0〉, (29)

Rζk D̂†
Tζk

|0〉 =

∑
j

vk j D̂†
ϕ j

|0〉, (30)

where φ j(ωi) are now the new modes defining the idler state and ϕ j(ωi) are the reflected modes
that will be traced out and

uk j =

∫
dω φ j(ω)

∗ζk(ω)T (ω)= Tζk 〈1;φ j |1; T ζk〉, (31)

vk j =

∫
dω ϕ j(ω)

∗ζk(ω)R(ω)= Rζk 〈1;ϕ j |1; Rζk〉. (32)

The filter relationship in equation (24) can now be written as follows:

Â†
ζk

→

∑
j

(
uk j Ĉ

†
φ j

+ vk j D̂†
ϕ j

)
. (33)

Because the filter has been modelled as a frequency-dependent beamsplitter, it will have similar
properties to a beamsplitter. One property that we will evoke throughout this paper is the
possibility that the filter will not allow the transmission of all photons from the incident state.
In particular, this becomes problematic when one photon, from an incident two-photon state, is
allowed to pass through the filter, while the other is rejected. In this case, detection of a filtered
two-photon state may then result in even a perfect detector mistaking it for a one-photon state.

4. Generating single-photon Fock states

Detection of a single photon in the idler mode heralds the presence of a single photon in the
signal mode. In this section, we consider a hypothetical perfect detector, an inefficient detector
and a Gaussian spectral filter placed in front of the lossy detector. We model the generation of
two-photon Fock states in section 5.
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4.1. Case 1: Perfect detection in the triggering idler mode

The projector for a detector that perfectly distinguishes the photon number but gains no
information about the frequency of the photon can be written as follows:

51 =

∫
dω â†(ω)|0〉〈0|â(ω)=

∑
j

|1; ξ j〉〈1; ξ j |. (34)

We can interpret this as: (i) the detection of a single photon â†(ω)|0〉; however, due to the lack
of spectral knowledge, ω must be integrated over; or alternatively, (ii) the detection of a single
photon in the spectral mode |1; ξ j〉; however, due to the lack of knowledge about which mode it
was in, it is necessary to sum over j . Since photon detection is destructive, the detected mode
must be traced out. The probability of detecting a single photon in the idler mode using a perfect
single-photon detector (refer to figure 1(a)) is

p1 = 〈9PDC|51|9PDC〉 = |N |
2
|χ |

2. (35)

Given a single-photon detection in the idler mode, the heralded signal state is

ρ1 =
1

p1
Tri

[
51|9PDC〉〈9PDC|

]
=

∑
k

|bk|
2
|1; ξk〉s〈1; ξk|. (36)

The g(2) of the signal state, which we define as

g(2) =

∑
j, j ′〈 Â†

ξ j
Â†
ξ j

′ Âξ j Âξ j
′〉(∑

j〈 Â†
ξ j

Âξ j 〉

)2 , (37)

is g(2) = 0. This reveals that there is only one photon in the signal mode, but not how pure it is.
The purity of the heralded state is

P1 = Tr[ρ2
1 ] = |N1|

4
∑

k

|bk|
4. (38)

For a state that only contains single photons, i.e. one that is heralded by a perfect detector, the
purity is equivalent to the Hong–Ou–Mandel visibility [28].

Without loss of generality, we order the Schmidt coefficients in decreasing order from
k = 0. Therefore, the pure single-photon state with the highest overlap with the projected state
will be the photon mode corresponding to the highest Schmidt coefficient, b0, and hence the
maximum fidelity with a single-photon Fock state is

F1 = max
j

F(ρ1, |1; ξ j〉)= 〈1; ξ0|ρ1|1; ξ0〉 = |b0|
2. (39)

The fidelity does not depend on χ . Increasing the strength of the nonlinearity only has an effect
on how often the detector registers a click; however, once that happens, the signal mode is
always projected into the same state.

4.2. Case 2: Inefficient detection in the triggering idler mode

An inefficient detector can be modelled by the transformation in equation (23) where T (ω)=
√
η and R(ω)=

√
1 − η, followed by a perfect detector (refer to figure 1(b)). After the

beamsplitter, the joint signal–idler state is

ρineff = TrD̂[|9ineff〉〈9ineff|], (40)
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=

Figure 1. Schematic diagrams of the SPDC setup for (a) perfect detection in
the triggering mode (see sections 4.1 and 5.1); (b) inefficient detection in the
triggering mode (see sections 4.2 and 5.2); and (c) (i) filtering the triggering
mode prior to detection with an inefficient detector and (ii) the equivalent
setup where the filter and beamsplitter have been combined into one filter (see
sections 4.3 and 5.3).

where

|9ineff〉 = N

{
(1 +χ 2)|0〉 +χ

∑
k

bk

(
√
η Â†

iξk
Ĉ†
ζk

+
√

1 − η Â†
iξk

D̂†
ζk

)
|0〉

+
χ2

2

(∑
k,k′

bkbk′ Â†
iξk

Â†
iξk′

(
ηĈ†

ζk
Ĉ†
ζk′

+ (1 − η)D̂†
ζk

D̂†
ζk′

+
√
η
√

1 − η
(

Ĉ†
ζk′

D̂†
ζk

+ Ĉ†
ζk

D̂†
ζk′

))
|0〉

)}
. (41)

The probability of detecting a single photon in the idler mode, using an inefficient single-photon
detector, is

p1,ineff = Tr[51ρineff] (42)

= |N |
2
|χ |

2η

1 + 2|χ |
2(1 − η)

 ∑
k, k′

k<k′

|bkbk′|
2 +
∑

k

|bk|
4


 . (43)

New Journal of Physics 12 (2010) 063001 (http://www.njp.org/)

http://www.njp.org/


11

Given a single-photon detection in the idler mode, the heralded signal state is

ρ1,ineff =
1

p1,ineff
TrĈ

[
51ρineff

]
(44)

= |N1,ineff|
2


∑

k

|bk|
2
|1; ξk〉i〈1; ξk| + 2|χ |

2(1 − η)

∑
k

|bk|
4
|2; ξk〉i〈2; ξk|

+
∑
k, k′

k<k′

|bkbk′|
2
|1; ξk〉i |1; ξk′〉i〈1; ξk|i〈1; ξk′|


 , (45)

where N1,ineff = Nχ
√
η/

√
p1,ineff. The g(2) for this state, defined in equation (37), is

g(2) =
γi

|N1,ineff|
2(1 + γi)2

, (46)

where

γi = 4|χ |
2(1 − η)

 ∑
k, k′

k<k′

|bkbk′|
2 +
∑

k′

|bk|
4

 . (47)

The purity of the signal state is

P1,ineff = Tr[ρ2
1,ineff] (48)

= |Ndet,1,ineff|
4


∑

k

|bk|
4 + 4|χ |

4(1 − η)2

 ∑
k, k′

k<k′

|bkbk′|
4 +
∑

k

|bk|
8


 . (49)

The maximum fidelity between the heralded state and a pure Fock state |1; ξ j〉 is

F1,ineff = max
j

F(|1; ξ j〉, ρ1,ineff)= 〈1; ξ0|ρ1,ineff|1; ξ0〉 = |N1,ineff|
2
|b0|

2. (50)

The fidelity is now a function of both the detector efficiency η and the nonlinearity
strength χ .

4.3. Case 3: Filtering the idler state

We now introduce a filter in the idler mode as shown in figure 1(c). Applying a filter, as defined
in equation (24), to the signal mode gives the filtered state

ρfilt = TrD̂[|9filt〉〈9filt|], (51)
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where

|9filt〉 = N

(1 +χ2)|0〉 +χ
∑
k, j

bk Â†
iξk

(
uk j Ĉ

†
φ j

+ vk j D̂†
ϕ j

)
|0〉

+
χ2

2

∑
k,k′, j, j ′

bkbk′ Â†
iξk

Â†
iξk′

(
uk j uk′ j ′Ĉ†

φ j
Ĉ†
φ j ′

+ vk j uk′ j ′ D̂†
ϕ j

Ĉ†
φ j ′

+ uk jvk′ j ′Ĉ†
φ j

D̂†
ϕ j ′

+ vk jvk′ j ′ D̂†
ϕ j

D̂†
ϕ j ′

)
|0〉

 , (52)

and uk j and vk j are defined as per equations (31) and (32). The probability of detecting a single
photon in the filtered idler mode is

p1,filt = Tr[51ρfilt] (53)

= |N |
2
|χ |

2


∑

k

|bk|
2T 2
ζk

+ |χ |
2


∑

k

2|bk|
4T 2
ζk

R2
ζk

+
∑
k, k′

k<k′

|bkbk′|
2
(

T 2
ζk

R2
ζk′

+ T 2
ζk′

R2
ζk

+ Tkk′Rk′k + Tk′kRkk′

)
 , (54)

where

Tkk′ = Tζk T ∗

ζk′
〈1; T ζk′|1; T ζk〉 =

∑
j

uk j u
∗

k′ j , (55)

Rkk′ = Rζk R∗

ζk′
〈1; Rζk′|1; Rζk〉 =

∑
j

vk jv
∗

k′ j . (56)

Given a single-photon detection in the idler mode, the heralded signal state is

ρ1,filt =
1

p1,filt
TrC

[
51ρfilt

]
(57)

= |N1,filt|
2

∑
k,k̃

bkb∗

k̃
Tkk̃|1; ξk〉〈1; ξk̃|

+ |χ |
2

 ∑
k,k′,k̃,k̃′

bkbk′b∗

k̃
b∗

k̃′
Tkk̃′Rk′k̃ Â†

ξk
Â†
ξk′

|0〉〈0| Âξk̃
Âξk̃′

 , (58)

where N1,filt = Nχ/
√

p1,filt. Note that filtering the idler mode also changes the mode structure
of the heralded signal state. The g(2) for this state, defined in equation (37), is

g(2) =
γ f

|N1,filt|
2
(∑

k |bk|
2|Tζk |

2 + γ f

)2 , (59)
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where

γ f = 2|χ |
2


∑

k

|bk|
4RkkTkk +

∑
k, k′

k < k′

|bkbk′|
2(RkkTk′k′ + Rk′kTkk′ + Rkk′Tk′k + Rk′k′Tkk)

 . (60)

The purity of the heralded state is

P1,filt = Tr[ρ2
1,filt] (61)

= |N1,filt|
4


∑
k,k̃

|bkbk̃|
2
|Tkk̃|

2 + |χ |
4


∑

k̃

2|bk̃|
4

×

 ∑
k, k′k < k′

|bkbk′|
2
|Rkk̃Tk′k̃ + Rk′k̃Tkk̃|

2 +
∑

k

2|bk|
4
|Rkk̃Tkk̃|

2



+
∑

k̃, k̃′k̃ < k̃′

|b∗

k̃
b∗

k̃′
|
2

∑
k

2|bk|
4
|Rkk̃Tkk̃′ + Rkk̃′Tkk̃|

2

+
∑
k, k′

k < k′

|bkbk′|
2
|Rkk̃Tk′k̃′ + Rk′k̃Tkk̃′ + Rkk̃′Tk′k̃ + Rk′k̃′Tkk̃|

2



 . (62)

The density matrix in equation (58) is not diagonal in the |1; ξk〉 basis, but this can easily be
achieved for the part of the state that is relevant to calculating the fidelity with a single-photon
Fock state, giving

ρ1,filt,part = |N1,filt|
2
∑
k,k̃

bkb∗

k̃
Tkk̃|1; ξk〉〈1; ξk̃| =

∑
m

dm|1; τm〉〈1; τm|, (63)

where

|1; τm〉 =

∑
k

cmk|1; ξk〉 (64)

and τm(ωs) are the new orthogonal modes defining the signal state. The maximum fidelity,
between the heralded state and a pure single-photon state, |1; τl〉, is

F1,filt = max
l

F(|1; τl〉, ρ1,filt)= max
l

〈1; τl |ρ1,filt,part|1; τl〉 = max
m

dm. (65)

In an experiment, the spectral distribution τm should be chosen in any interferometric experiment
to optimize for the best performance of the heralded single photons.

In the extreme case where T̃ (ω)= δ(ω−µ), i.e. the filter picks out a single frequency µ,
the fidelity tends to unity and the signal state tends to the pure state

|91,filt,δ〉 = N1,filt

∑
k

bkζk(µ)|1; ξk〉 =

√
dm|1; τm〉, (66)
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as χ → 0. This implies that it is possible to obtain arbitrarily pure single-photon states, with the
use of spectral filtering and by ensuring that the nonlinearity strength is low.

5. Generating two-photon Fock states

In addition to creating single-photon states, it is becoming increasingly desirable to create higher
photon-number Fock states. In this section, we will investigate the effects of detector efficiency,
and filtering of the idler mode, on the generation of two-photon Fock states in the signal mode
conditional on the detection of heralded two-photon states in the idler mode.

5.1. Case 1: Perfect detection in the triggering idler mode

The projector for detecting two photons in any spectral mode ζ j and ζ j ′ will be separated into
two parts: the part that detects two photons in orthogonal modes and the part that detects two
photons in the same mode:

52 =

∑
j

|2; ζ j〉〈2; ζ j | +
∑
j, j ′

j< j ′

|1; ζ j〉|1; ζ j〉〈1; ζ j |〈1; ζ j |. (67)

Refer to the schematic in figure 1(a). The probability of detecting two photons in the idler mode,
with a frequency-insensitive detector, is

p2 = 〈9PDC|52|9PDC〉 = |N |
2
|χ |

4

 ∑
k, k′

k<k′

|bkbk′|
2 +
∑

k

|bk|
4

 . (68)

Given a two-photon detection in the idler mode, the heralded state in the signal mode is

ρ2 =
1

p2
Tri

[
52|9PDC〉〈9PDC|

]
(69)

= |N2|
2


∑

k

|bk|
4
|2; ξk〉s〈2; ξk| +

∑
k, k′

k<k′

|bkbk′|
2
|1; ξk〉s|1; ξk′〉s〈1; ξk|〈1; ξk′|

 (70)

=
|N2|

2

2

∑
k

|bk|
2 Â†

sξk
|0〉〈0| Âsξk

⊗

∑
k′

|bk′|
2 Â†

sξk′
|0〉〈0| Âsξk′

, (71)

where N2 = Nχ 2/
√

p2. The purity is

P2 = Tr[ρ2
2 ] = |N2|

4


∑
k, k′

k<k′

|bkbk′|
4 +
∑

k

|bk|
8

 . (72)
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The g(2) for this state is g(2) = 1/2. It is interesting to note that the g(2) does not depend on the
purity of the two-photon state. It will always remain at the value of 1/2 regardless of whether
the two-photon state is in a Fock state or in some other form. This reflects the fact that g(2) is
only sensitive to the photon number, and not to the modal properties of the state.

The maximum fidelity between the heralded state and an ideal two-photon Fock
state |2; ξ j〉 is

F2 = max
j

F(ρ2, |2; ξ j〉)= 〈2; ξ0|ρ2|2; ξ0〉 = |N2|
2
|b0|

4. (73)

The fidelity does not depend on χ . Increasing the strength of the nonlinearity has an effect only
on how often the detector registers two photons; however, once that happens, the signal mode is
always projected into the same state.

5.2. Case 2: Inefficient detection in the triggering idler mode

The probability of detecting two photons in the idler mode, with an inefficient frequency-
insensitive detector (refer to figure 1(b)), is

p2,ineff = Tr[52ρineff] = |N |
2
|χ |

4η2

 ∑
k, k′

k<k′

|bkbk′|
2 +
∑

k

|bk|
4

 , (74)

where ρineff is defined in equation (44). Because our analysis only extends to second order in
photon number, the expressions for the fidelity and purity will be the same as they were in
section 5.1, where a perfect detector was used. If we included higher order terms, we would
expect the fidelity and purity to vary as a function of χ and η in a similar fashion to the single-
photon case in section 4.

5.3. Case 3: Filtering of the idler state

We now introduce a filter in the idler mode as shown in figure 1(c). After filtering the state, the
probability of detecting two photons in the idler mode, with an inefficient frequency insensitive
detector, is

p2,filt = Tr[52ρfilt] (75)

= |N |
2
|χ |

4

∑
k′

|bk|
4
|Tζk |

4 +
∑
k, k′

k<k′

|bkbk′|
2(|Tζk |

2
|Tζk′ |

2 + Tkk′Tk′k)

 , (76)

where ρfilt is defined in equation (51). Given a two-photon detection in the idler mode, the
heralded state in the signal mode is

ρ2,filt =
1

p2
TrC

[
52ρfilt

]
(77)
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= |N2,filt|
2

∑
k,k̃

b2
kb∗2

k̃
T2

kk̃
|2; ξk〉〈2; ξk̃| +

∑
k, k′, k̃k<k′

√
2bkbk′b∗2

k̃
Tkk̃Tk′k̃|1; ξk〉|1; ξk′〉〈2; ξk̃ |

+
∑

k, k̃, k̃′k̃<k̃′

√
2b2

kb∗

k̃
b∗

k̃′
Tkk̃Tkk̃′|2; ξk〉〈1; ξk̃|〈1; ξk̃′|

+
∑

k, k′, k̃, k̃′k<k′, k̃<k̃′

bkbk′b∗

k̃
b∗

k̃′
(Tkk̃Tk′k̃′ + Tk′k̃Tkk̃′)|1; ξk〉|1; ξk′〉〈1; ξk̃|〈1; ξk̃′|

 (78)

=
|N2,filt|

2

2

∑
k,k̃

bkb∗

k̃
Tk,k̃ Â†

sξk
|0〉〈0| Âsξ

k̃
⊗

∑
k′,k̃′

bk′b∗

k̃′
Tk′,k̃′ Â†

sξk′
|0〉〈0| Âsξ

k̃′
, (79)

where N2,filt = Nχ2/
√

p2,filt. Again, g(2) = 1/2 as there are always two photons in the state. The
purity of the heralded state is

P2,filt = Tr[ρ2
2,filt] = |N2,filt|

4

 ∑
k, k′k<k′

|bkbk′|
2

∑
k̃

2|bk̃|
4
|Tk,k̃Tk′,k̃|

2

+
∑

k̃, k̃′k̃<k̃′

|bk̃bk̃′|
2
|Tk,k̃Tk′,k̃′ + Tk′,k̃Tk,k̃′|

2



+
∑

k

|bk|
4

∑
k̃

|bk̃|
4
|Tk,k̃|

4 +
∑

k̃, k̃′k̃<k̃′

2|bk̃bk̃′|
2
|Tk,k̃Tk,k̃′|

2

 . (80)

The density matrix in equation (78) is not diagonal in the |1; ξk〉 basis. This can easily be

achieved, giving

ρ2,filt =
1

2

∑
m,m′

dmdm′ Â†
sτm

Â†
sτm′

|0〉〈0| Âsτm Âsτm′
(81)

=

∑
m

d2
m|2; τm〉〈2; τm| +

∑
m,m′

m<m′

dmdm′|1; τm〉|1; τm′〉〈1; τm|〈1; τm′|, (82)

where |1; τm〉 is defined in equation (64). The maximum fidelity, between the heralded state and
a pure two-photon state with an optimized spectral distribution function |2; τl〉, is

F2,filt = max
l

F(|2; τl〉, ρ2,filt)= max
l

〈2; τl |ρ2,filt|2; τl〉 = max
m

d2
m. (83)

In the extreme case where T̃ (ω)= δ(ω−µ), i.e. the filter picks out a single frequency µ, the
fidelity tends to unity and the signal state tends to the pure state

|92,filt,δ〉 =
N2,filt

2

∑
k

bkζk(µ) Â
†
sξk

|0〉 ⊗

∑
k′

bk′ζk′(µ) Â†
sξk′

|0〉 (84)
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= dm|2; τm〉, (85)

as χ → 0. This implies that it is possible to obtain arbitrarily pure two-photon states, with the
use of spectral filtering and by ensuring that the nonlinearity strength is low.

6. Physical example I—correlated JSA

As a physical example, we model a type II PP-KTP waveguide of length L = 3.6 mm and
a periodicity of 3= 8.8µm, pumped with a 400 nm laser with a 1 nm FWHM (σp = 5.00 ×

1012 s−1), which down-converts to 800 nm in the signal and idler modes. In figures 2(a)–(c), we
have plotted the pump function, the PMF and the JSA for the given parameters. Figure 2(d)
shows the corresponding Schmidt modes: initial signal modes and initial idler modes. In
addition, it can be seen that, after filtering the idler state, the idler Schmidt modes take on
different spectral shapes. These filtered idler modes are no longer orthogonal to each other and
therefore need to be orthogonalized, giving the orthogonalized idler modes. When the idler
mode is detected, the signal state gets projected into a mixture of orthogonal modes, as shown
by the diagonalized signal modes. Filtering and detection of the idler state changes the spectral
shape of the signal state even though there is no physical interaction. This is a typical effect of
entanglement.

In general, the Schmidt decomposition cannot be found analytically, but can be calculated
numerically by computing the singular value decomposition of a discretized JSA. Unless stated
otherwise, the results in this section were obtained using an 800 × 800 grid, ranging over
0.2 × 1015 s−1, centred on ωi = ωs = µ. We note that an insufficiently fine grid, or insufficiently
large region, will result in inflated values for the purity. The entropy of entanglement for this
particular JSA is E = 4.6.

In this section, we present the results for the probability of detecting a single photon in
the idler mode; the g(2) and purity of the heralded state in the signal mode; and the fidelity
between the signal state and the desired ideal Fock state. We compare the results for an unfiltered
idler state; an idler state filtered with a Gaussian filter T(ωi)= exp(−(µf −ωi)/2σ 2

f ), of various
widths σf and centred at the central idler frequency, where the filter function has been scaled
such that the maximum value is always 1; as well as the limiting case where T(ωi)= δ(ωi −µf).
We also present similar results for heralding a two-photon state conditional on the detection of
two photons in the idler mode.

6.1. Generating single-photon Fock states

Due to the second-order truncation of the PDC output state, we are not considering six- (or
higher) photon contributions. At χ = 0.5, the fraction of six-photon states, to two-photon states,
would roughly be χ6/χ 2

= 1/16. We will not plot results beyond that.
In figure 3(a), we have plotted the probability of detecting a single photon in the idler mode

as a function of the nonlinearity χ and the efficiency of the detector η. Notice that the probability
of detecting a single photon in the idler mode increases with higher detector efficiency and
higher nonlinearity strength, as expected.

The fidelity has been plotted in figure 3(b). The inclusion of a filter has a drastic effect on
the fidelity. It has a greater dependence on the strength of the nonlinearity than in the unfiltered
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orthogonalized filtered idler modes

diagonalized signal modes

Figure 2. (a) The Gaussian pump function α(ωi +ωs) with a 1 nm FWHM at
µp = 400 nm. (b) Phase-matching function 8(ωi, ωs) for a waveguide of length
L = 3.6 mm and a periodicity of3= 8.8µm. (c) The resulting JSA f (ωi, ωs)=

α(ωi +ωs)8(ωi, ωs). The JSA has been plotted as a function of the frequency;
however, corresponding values for the wavelength have been included. (d)
Schmidt numbers and modes for the JSA (top to bottom): the first 20 Schmidt
numbers bk; the first five Schmidt modes ξk(ωs) for the signal state; the first five
Schmidt modes ζk(ωi) for the idler state, as well as a Gaussian filter function
of width σf = 2 × 1012 s−1 (dashed line); the filtered Schmidt modes T (ωi)ζk(ωi)

for the idler state; the othogonalized idler modes φ j(ωi); the diagonalized signal
modes τm(ωs).

case; however, the overall fidelity is much higher. Note as well that there is a tradeoff between
the fidelity and the probability of detection.

In figure 3(c), we have plotted the g(2) for the heralded state in the signal mode. Note that,
for visual clarity, the figure orientation has been rotated by π around the z-axis, with respect
to the other plots. It is useful to know that g(2) = 0 for a single-photon state and 1/2 for a
two-photon state. A curious thing is that decreasing the filter width results in higher fidelities,
despite the higher proportion of two-photon states, as shown by the g(2). This suggests that for
this particular JSA, the dominant cause of impurity is the spectral entanglement, rather than the
resulting photon-number mixture due to the presence of higher-order terms.
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Figure 3. (a) The probability of detecting a single photon in the idler mode
for (top to bottom) no filter; σf = 3 × 1012 s−1; σ f = 2 × 1012 s−1; σf =

1 × 1012 s−1. Note that the probability is plotted on a log scale. (b) The fidelity
of the signal state with an ideal Fock state for (top to bottom) σf = 0; σf =

1 × 1012 s−1; σf = 2 × 1012 s−1; σ f = 3 ×1012 s−1; no filter. (c) The g(2) of the
signal state for (top to bottom) σf = 0; σf = 1 × 1012 s−1; σf = 2 × 1012 s−1; σf =

3 × 1012 s−1; no filter. Note the change in axis orientation. (d) The purity of the
signal state for (top to bottom) σf = 0; σf = 1 × 1012 s−1; σf = 2 × 1012 s−1; no
filter.

In figure 3(d), we have plotted the purity of the state in the signal mode. Due to the four-
fold summation, the purity for the filtered case is very demanding computationally; therefore,
we have only included examples of two filter widths. The results for the filtered case were
computed using a 600 × 600 grid, ranging over 0.16 × 1015 s−1, centred on ωi = ωs = µ, and
truncating bk with values below 10−2.

To achieve a fidelity of F = 0.95, using a heralding detector with efficiency η = 0.5,
we could choose from a range of filter widths at different nonlinearity strengths. Different
combinations, however, result in slightly different probabilities of success. Figure 4(a) shows
the probability of success, and required nonlinearity, for a number of filter widths.

6.2. Generating two-photon Fock states

At χ = 0.25, the fraction of six-photon states, to four-photon states, would roughly be χ6/χ 4
=

1/16. We will not plot the results beyond that. Figure 5(a) shows the probability for an inefficient
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Figure 4. Probability of detecting a single photon in the idler mode, and required
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JSA (see section 6); (b) symmetric JSA (see section 7.1); (c) asymmetric JSA
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Figure 5. (a) Probability of detecting two photons in the idler mode for (top
to bottom) no filter; σf = 3 × 1012 s−1; σf = 2 × 1012 s−1; σf = 1 × 1012 s−1. Note
that the probability is plotted on a log scale. (b) Purity and fidelity of the signal
state with an ideal Fock state.

detector to detect two photons in the idler mode. The corresponding fidelities and purities have
been shown in figure 5(b) and do not vary as a function of χ and η.

7. Physical example II—group velocity matching

In this section, we will examine particular phase-matching conditions, which result in a less
entangled JSA and therefore a more pure heralded Fock state. It is common to approximate the
phase-matching function as 8(ωi, ωs)= exp(−γ L21k2/4), where γ ≈ 0.193. By making this
approximation, we can write the JSA as

f (ωi, ωs)∝ exp
(
−
(ωi +ωs − 2µ)2

2σ 2
p

)
exp

(
−
γ L21k2

4

)
. (86)
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In order to make equation (86) separable, we require all ‘cross-terms’, i.e. terms that contain
products of ωi and ωs, to vanish. This occurs when the condition

2

σ 2
+ γ L2(k ′

s − k ′

p)(k
′

i − k ′

p)= 0 (87)

is met, yielding a JSA of the form f (ωi, ωs)∝ fi(ωi) fs(ωs) [7]. One way to satisfy the condition
in equation (87) is to set k ′

p = (k ′

s + k ′

i)/2, which results in the following condition for the length
of the waveguide, as a function of the pump width:

L = 1/
√

8γ σ 2
p (k

′
s − k ′

i)
2. (88)

These conditions generate a symmetric JSA, where both signal and idler modes have equal
widths. Alternatively, rearranging equation (87) as follows:

4

σ L(k ′

i − k ′
p)

+ γ σ L(k ′

s − k ′

p)= 0, (89)

we can see that by making L � σ−1, i.e. L → ∞ and setting k ′

p = k ′

s, we can also obtain a
separable JSA. These conditions generate an asymmetric JSA [7].

We have made use of the Gaussian approximation for 8(ωi, ωs) to obtain the conditions
for separability; however, we will now input these conditions into the original sinc form of the
function. This analysis will not result in completely pure states being generated; however, it
should correspond more closely to experimental observations. The phase-matching conditions
derived here may not necessarily be the optimal solutions. Numerical simulation may reveal
phase-matching conditions more suited to the sinc form of the phase-matching function;
however, we do not expect this to be a large effect.

7.1. Symmetric JSA

In order to meet the extended phase-matching conditions for a symmetric, separable JSA, we
again model a type II PP-KTP waveguide, now of length L = 24.2 mm and a periodicity of
3= 68.4µm, pumped with a 788 nm laser with a 0.7 nm FWHM (σp = 0.9 × 1012 s−1), which
down-converts to 1576 nm in the signal and idler modes. Unless stated otherwise, the results in
this section were obtained using an 800 × 800 grid, ranging over 0.06 × 1015 s−1, centered on
ωi = ωs = µ.

Figure 6 shows the JSA and the corresponding Schmidt values and modes. Note in the
Schmidt decomposition that the first mode is much more dominant than it was in section 6. The
entropy of entanglement for this JSA is E = 0.88. If we had used the Gaussian approximation
for 8, the JSA would decompose into one pair of Schmidt modes and the entropy of
entanglement would be E = 0. In such a case, the four-photon term would consist only of two-
photon Fock states.

As an intuitive guide to why the above conditions generate the given JSA, note that varying
the parameter 1k has the effect of changing the gradient of the phase-matching function
8(ωi, ωs) (see figure 6(b)), rotating it around ωi = ωs = µ, while changing the parameter L
alters the width of the phase matching function. The goal is to pick 1k, and therefore k ′

p, and
L such that the phase-matching function is perpendicular, and of equal width, to the pump
function.

New Journal of Physics 12 (2010) 063001 (http://www.njp.org/)

http://www.njp.org/


22

0 5 10 15
0

0.5

1

k

S
ch

m
id

t v
al

ue

1.1902 1.1927 1.1952 1.1977 1.2002
−1

0

1
x 10

−6

am
pl

itu
de

initial signal modes

1.1902 1.1927 1.1952 1.1977 1.2002
−1

0

1
x 10

−6

am
pl

itu
de

initial idler modes

1.1902 1.1927 1.1952 1.1977 1.2002
−1

0

1
x 10

−6

am
pl

itu
de

filtered idler modes

1.1902 1.1927 1.1952 1.1977 1.2002

−1

0

1

x 10
−6

am
pl

itu
de

orthogonalized filtered idler modes

1.1902 1.1927 1.1952 1.1977 1.2002
−1

0

1
x 10

−6

frequency (× 1015 s−1)

am
pl

itu
de

diagonalized signal modes

idler frequency (× 1015 s−1)

si
gn

al
 fr

eq
ue

nc
y 

(×
 1

015
 s

−
1 )

1.191 1.192 1.193 1.194 1.195 1.196 1.197 1.198 1.199 1.2

1.191

1.192

1.193

1.194

1.195

1.196

1.197

1.198

1.199

1.2

idler wavelength (µm) 

si
gn

al
 w

av
el

en
gt

h 
(µ

m
) 

 

1.583 1.581 1.580 1.579 1.577 1.576 1.575 1.573 1.572 1.571

1.583

1.581

1.580

1.579

1.577

1.576

1.575

1.573

1.572

1.571

idler frequency (× 1015 s−1)
1.191 1.192 1.193 1.194 1.195 1.196 1.197 1.198 1.199 1.2

1.191

1.192

1.193

1.194

1.195

1.196

1.197

1.198

1.199

1.2

idler wavelength (µm) 

si
gn

al
 w

av
el

en
gt

h 
(µ

m
) 

 

1.583 1.581 1.580 1.579 1.577 1.576 1.575 1.573 1.572 1.571

1.583

1.581

1.580

1.579

1.577

1.576

1.575

1.573

1.572

1.571

idler frequency (× 1015 s−1)

si
gn

al
 fr

eq
ue

nc
y 

(×
 1

015
 s

−
1 )

1.191 1.192 1.193 1.194 1.1951.1961.1971.198 1.199 1.2

1.191

1.192

1.193

1.194

1.195

1.196

1.197

1.198

1.199

1.2

idler wavelength (µm) 
1.583 1.581 1.580 1.579 1.577 1.576 1.575 1.573 1.572 1.571

1.583

1.581

1.580

1.579

1.577

1.576

1.575

1.573

1.572

1.571

(a) (b)

(c)

(d)

Figure 6. (a) Gaussian pump function α(ωi +ωs) with a 0.7 nm FWHM
at µp = 788 nm. (b) Phase-matching function 8(ωi, ωs) for a waveguide of
length L = 24.2 mm and a periodicity of 3= 68.4µm. (c) The resulting JSA
f (ωi, ωs)= α(ωi +ωs)8(ωi, ωs). The JSA has been plotted as a function of
the frequency; however, corresponding values for the wavelength have been
included. (d) Schmidt numbers and modes for the JSA (top to bottom): the first
20 Schmidt numbers bk; the first five Schmidt modes ξk(ωs) for the signal state;
the first five Schmidt modes ζk(ωi) for the idler state, as well as a Gaussian
filter function of width σf = 1 × 1012 s−1 (dashed line); the filtered Schmidt
modes T (ωi)ζk(ωi) for the idler state; the othogonalized idler modes φ j(ωi); the
diagonalized signal modes τm(ωs).

As in the previous section, we present results for the probability, purity, g(2) and fidelity, for
the heralding of one- and two-photon Fock states. For a realistic JSA, manipulating the phase-
matching conditions can result in high purity of the heralded state; however, it does not reach
unity. From figure 6(c), it can be seen that the outer lobes contribute to the spectral correlations
and perhaps it is possible to increase the purity of the heralded state by filtering them out.
Therefore, we will again compare the results for an unfiltered idler state; an idler state filtered
with a Gaussian filter T(ωi)= exp(−(µf −ωi)/2σ 2

f ), of various widths σf and centred at the
central idler frequency; as well as the limiting case where T(ωi)= δ(ωi −µf).
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Figure 7. (a) The probability of detecting a single photon in the idler mode for
(top to bottom) no filter; σf = 3 × 1012 s−1; σf = 2 × 1012 s−1; σf = 1 × 1012 s−1.
Note that the probability is plotted on a log scale. (b) The fidelity of the signal
state with an ideal Fock state for (top to bottom at χ = 0 and η = 0) σ f = 0;
σf = 1 × 1012 s−1; σf = 2 × 1012 s−1; σf = 3 × 1012 s−1; no filter. (c) The g(2) of
the signal state for (top to bottom) σf = 0; σf = 1 × 1012 s−1; σf = 2 × 1012 s−1;
σf = 3 × 1012 s−1; no filter. Note the change in axis orientation. (d) The purity of
the signal state for (top to bottom at χ = 0 and η = 0) σ f = 0; σ f = 1 × 1012 s−1;
σf = 2 × 1012 s−1; no filter.

7.1.1. Generating single-photon Fock states. Figure 7(a) shows the probability of detecting a
single photon in the signal mode. Since most of the photons will have spectral distributions
within the filter width, we do not see a very big drop in the probability, when filtering.

Figure 7(b) shows the fidelity. We distinguish between these surfaces by referring to their
values at the point χ = 0 and η = 0. Immediately we can see that the fidelity is much higher
than in section 6. In the region of interest, filtering the idler mode increases the fidelity of the
signal state with a single photon. Decreasing the filter width can be detrimental to the fidelity
when the nonlinearity and the detector efficiency are high.

Figure 7(c) shows the g(2) and figure 7(d) shows the purity of the state in the signal mode.
Again, we will distinguish between these surfaces by referring to their values at the point χ = 0
and η = 0. The results for the filtered case were computed using a 600 × 600 grid, ranging over
0.06 × 1015 s−1, centred on ωi = ωs = µ, and truncating bk with values below 10−2.

New Journal of Physics 12 (2010) 063001 (http://www.njp.org/)

http://www.njp.org/


24

P

F

1 2 3 no filter 

0.8 

0.9 

1. 

(b) 

Figure 8. (a) The probability of detecting two photons in the idler mode for (top
to bottom) no filter; σf = 3 × 1012 s−1; σf = 2 × 1012 s−1; σf = 1 × 1012 s−1. Note
that the probability is plotted on a log scale. (b) The purity and fidelity of the
signal state with an ideal Fock state.

Figure 4(b) shows the probability of success, and required nonlinearity, for a number of
filter widths, in order to achieve a fidelity of F = 0.95, using a detector with efficiency η = 0.5.
Note that while the probability of success is greatly enhanced by using a source engineered state,
the required pump powers are nearly the same. Also note the ‘flat’ region, where the probability
does not change much, between σf = 0.6 × 1012 s−1 and 0.7 × 1012 s−1. This corresponds to the
‘dark’ region between the lobes on the JSA. Over this region, we do not expect much change in
the flux.

7.1.2. Generating two-photon Fock states. Figure 8(a) shows the probability for an inefficient
detector to detect two photons in the idler mode. The corresponding fidelities and purities have
been shown in figure 8(b). The fidelity and purity do not vary as a function of χ and η.

7.2. Asymmetric JSA

In order to meet the extended phase-matching conditions for an asymmetric separable JSA,
we again analyse a type II PP-KTP waveguide, of length L = 80 mm and a periodicity of
3= 232µm, pumped with a 1.93µm laser with a 3 nm FWHM (σp = 0.64 × 1012 s−1), which
down-converts to 3.85µm in the signal and idler modes. We note that single-photon detection is
not particularly practical at this wavelength; however, for consistency, we have chosen to use a
PP-KTP waveguide throughout this paper. The same JSA can be achieved in different systems,
at more practical wavelengths. See, for example, Mosley et al [15]. Unless stated otherwise, the
results in this section were obtained using an 800 × 800 grid, ranging over 8 × 1012 s−1, centered
on ωi = ωs = µ.

Figure 9 shows the JSA and the corresponding Schmidt values and modes. Note, in the
Schmidt decomposition, that the first mode is even more dominant than in the symmetric case.
The entropy of entanglement for this JSA is E = 0.37.

Setting k ′

p = k ′

s generates a vertical phase-matching function. As long as the waveguide is
sufficiently long, and therefore the width of the phase-matching function sufficiently thin, and
the pump is sufficiently wide, the result will be a vertical, almost elliptical and very thin JSA.
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orthogonalized filtered idler modes

diagonalized signal modes

Figure 9. (a) Gaussian pump function α(ωi +ωs) with a 3 nm FWHM at µp =

1.93µm. (b) Phase-matching function 8(ωi, ωs) for a waveguide of length
L = 80 mm and a periodicity of3= 232µm. (c) The resulting JSA f (ωi, ωs)=

α(ωi +ωs)8(ωi, ωs). The JSA has been plotted as a function of the frequency;
however, corresponding values for the wavelength have been included. (d)
Schmidt numbers and modes for the JSA (top to bottom): the first 20 Schmidt
numbers bk; the first five Schmidt modes ξk(ωs) for the signal state; the first five
Schmidt modes ζk(ωi) for the ilder state, as well as a Gaussian filter function of
width σf = 100 × 109 s−1 (dashed line); the filtered Schmidt modes T (ωi)ζk(ωi)

for the idler state; the othogonalized idler modes φ j(ωi); the diagonalized signal
modes τm(ωs).

As in the previous section, we present the results for the probability, purity, g(2) and fidelity,
for the heralding of one- and two-photon Fock states. Although it is possible to achieve purities
arbitrarily close to unity by increasing the length of the waveguide, the vertical orientation of
the JSA places it in a unique position to take advantage of spectral filtering. We will once
again compare results for an unfiltered idler state; an idler state filtered with a Gaussian filter
T(ωi)= exp(−(µf −ωi)/2σ 2

f ) of various widths σf and centred at the central idler frequency;
as well as the limiting case where T(ωi)= δ(ωi −µf).

7.2.1. Generating single-photon Fock states. Figure 10(a) shows the probability of detecting
a single photon in the signal mode. Since most of the photons will have spectral distributions
within the filter width, we do not see a very big drop in the probability with filtering, until the
filter is so narrow that it cuts into the central lobe.
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Figure 10. (a) The probability of detecting a single photon in the idler mode
for (top to bottom) no filter; σf = 150 × 109 s−1; σf = 100 × 109 s−1; σf = 50 ×

109 s−1. Note that the probability is plotted on a log scale. (b) The fidelity of the
signal state with an ideal Fock state for (top to bottom at χ = 0.5 and η = 1)
no filter; σf = 150 × 109s−1; σf = 100 × 109 s−1; σf = 50 × 109 s−1; σf = 0. (c)
The g(2) of the signal state for (top to bottom) σf = 0; σf = 50 × 109 s−1; σf =

100 × 109 s−1; σf = 150 × 109 s−1; no filter. Note the change in axis orientation.
(d) The purity of the signal state for (top to bottom at χ = 0.5 and η = 1) no
filter; σf = 150 × 109 s−1; σf = 100 × 109 s−1; σf = 50 × 109 s−1; σf = 0.

Figure 10(b) shows the fidelity. We will distinguish between these surfaces by referring to
their values at χ = 0.5 and η = 1. Again, filtering the idler mode increases the fidelity of the
signal state with a single photon in the low-χ and low-η regimes.

Figure 10(c) shows the g(2) and figure 10(d) shows the purity of the state in the signal
mode. Again, we will distinguish between these surfaces by referring to their values at the point
χ = 0.5 and η = 1. The results for the filtered case were computed using a 600 × 600 grid,
ranging over 8 × 1012 s−1, centred on ωi = ωs = µ, and truncating bk with values below 10−2.

Figure 4(c) shows the probability of success, and required nonlinearity, for a number
of filter widths, in order to achieve a fidelity of F = 0.95, using a heralding detector with
efficiency η = 0.5. Note that, as with the symmetric case, while the probability of success is
greatly enhanced by using a source engineered state, the required pump powers are nearly
the same. Also note the ‘flat’ region, where the probability does not change much, between
σf = 0.3 × 1012 s−1 and 0.35 × 1012 s−1. This corresponds to the ‘dark’ region between the lobes
on the JSA. Over this region, we do not expect much change in the flux.
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Figure 11. (a) The probability of detecting two photons in the idler mode for (top
to bottom) no filter; σf = 150 × 109 s−1; σf = 100 × 109 s−1; σf = 50 × 109 s−1.
Note that the probability is plotted on a log scale. (b) The purity and fidelity of
the signal state with an ideal Fock state.

7.2.2. Generating two-photon Fock states. Figure 11(a) presents the probability of detecting
two photons in the idler mode. The corresponding fidelities and purities have been shown in
figure 8(b). They do not vary as a function of χ and η.

8. Discussion

We have calculated the spectrally entangled output state of a parametric down-converter to
second order in photon number, with the goal of generating heralded one- and two-photon
Fock states in one spatial mode (signal), conditional on the detection of one or two photons
in the other spatial mode (idler). We have presented analytical expressions for the heralded state
after the idler mode is spectrally filtered using a Gaussian filter and detected with an inefficient
detector. The heralded signal state was then characterized by its g(2) and purity. In addition, we
calculated the fidelity of the heralded state with the desired ideal Fock state.

As a physical example, we modelled a type II PP-KTP waveguide, pumped by lasers at
wavelengths of 400 nm, 788 nm and 1.93µm. We found that in the first example, where no
effort was made to perform any extended phase-matching conditions, the results were states
with very low purity. After strong spectral filtering, Fock states with arbitrarily high purity
could be achieved, but at very low probabilities of success. To achieve a fidelity of F = 0.95
for a single-photon state, using a heralding detector with efficiency η = 0.5, the probability of
success would be of the order of 10−4.

The latter two examples, where extended phase-matching conditions were fulfilled,
resulted in much higher purity states; however, some additional filtering was still required to
achieve very high purity states. Both the symmetric and asymmetric examples were able to
achieve a fidelity, with a single-photon Fock state, of F = 0.95, using a heralding detector
with efficiency η = 0.5, with probabilities of success of the order of 10−2. High-purity two-
photon Fock states were also possible. While results were comparable for the symmetric and
asymmetric examples, this was due to our choice of physical parameters. The asymmetric case
would be able to achieve higher fidelities, with no filtering, by choosing a longer waveguide.
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