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Time-multiplexed measurements of nonclassical light at telecom wavelengths
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We report the experimental reconstruction of the statistical properties of an ultrafast pulsed type II parametric
down-conversion source in a periodically poled potassium titanyl phosphate waveguide at telecom wavelengths,
with almost perfect photon-number correlations. We use a photon-number-resolving time-multiplexed detector
based on a fiber-optical setup and a pair of avalanche photodiodes. By resorting to a germane data-pattern
tomography, we assess the properties of the nonclassical light states with unprecedented precision.

DOI: 10.1103/PhysRevA.90.042105

I. INTRODUCTION

Nonclassical states of light constitute an invaluable resource
for deploying quantum-enhanced technologies as diverse as
cryptography, computing, and metrology, to cite only some
of the many relevant examples. Certifying nonclassicality
requires inferring either the photon-number distribution or a
quasiprobability distribution from a set of measurements. Even
though the latter approach is well established [1] (it involves
homodyne detection followed by an appropriate reconstruction
scheme), photon counting seems a more natural choice in this
discrete-variable scenario, in which photons are used as flying
qubits.

Capitalizing on photon counting places stringent demands
on detector performance. This is currently driving considerable
improvements in single-photon detectors [2—10]; in particular,
the photon-number-resolving (PNR) capability is nowadays
required in most advanced protocols [11].

Several strategies have been proposed thus far for PNR
detectors. Single-photon avalanche diodes (SPADs) have
become the prevailing option for many applications. Si-based
SPADs constitute a relatively mature technology with several
efficient devices commercially available, but they are only
suitable for use at visible and near-infrared wavelengths.
For experiments at technologically important telecom wave-
lengths, the main contending technologies are InGaAs SPADs,
which are plagued by high dark-count rates and long dead
times, thereby making gating essential.

A proposal to employ a time-multiplexed detection (TMD)
based on SPAD has been put recently forward [12—14]. These
TMDs work also for pulsed light, and the photon-number
distribution of a quantum state can be retrieved by inverting the
measured photon statistics. Experimental applications, demon-
strating a reliable loss calibration, and the TMD suitability
for detecting multimode statistics and nonclassicality, have
already been accomplished [15-20].

The effective implementation of these advanced schemes
relies on a complete and accurate knowledge of the detector,
an issue that has lately started to attract a good deal of
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attention [21-27]. The idea is to employ the outcome statistics
in response to a set of complete certified input states.

However, as shown in Ref. [28], if the measurement itself is
of no interest, the costly detector calibration can be bypassed
by using a direct fitting of data in terms of detector responses
to input probes. Thus, state estimation is done without any
prior knowledge of the measurement, avoiding unnecessary
wasting of resources [29,30].

In this paper, we demonstrate this data-pattern tomography
by presenting a complete reconstruction of nonclassical states
of light using an uncalibrated TMD and discussing their
intriguing features.

II. EXPERIMENTAL SETUP

The states in our experiment are generated by type II
spontaneous parametric down-conversion (SPDC) inside a
periodically poled potassium titanyl phosphate (KTP) waveg-
uide. The SPDC source produces decorrelated signal and idler
states with a purity for heralded states above 80% and high
coupling efficiency into single-mode fibers. The setup is the
same as the one described in detail in Ref. [31] and sketched
in Fig. 1, which schematizes also the TMD: two incoming
pulses are split into 16 temporal bins and impinge onto SPADs.
Counting the clicks allows us to estimate photon numbers and
photon-number correlations between the two input ports. Since
we work at telecom wavelengths, we use InGaAs SPADs (Id
Quantique id201 at a repetition rate of 1 MHz with a gate
width of about 2.5 ns). As briefly mentioned before, InGaAs
SPADs are the simplest and most cost-efficient detectors
available at telecom wavelengths. However, they have some
disadvantages: the detection efficiencies are below 25% and
afterpulsing is present with a few percent probability [32].
Consequently, the conventional TMD model [12], which only
takes into account the probabilistic splitting and overall losses,
is inadequate. A more sophisticated technique is required to
recover photon statistics from the measured click frequencies;
this is where data-pattern tomography comes into play.

The state is specified by the two-mode photon-number
distribution P,,,,, where the first (second) index refers to the
signal (idler) mode. We also denote by p,p the probability of
simultaneous signal () and idler (8) detection. Detections are
thus described by eight-digit binary numbers, where values of
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FIG. 1. (Color online) (a) Probe-state generation. Pulsed light at telecom wavelengths is generated in a Ti:sapphire pumped optical
parametric oscillator (OPO). The repetition rate of the reference is lowered by an acousto-optic modulator (AOM). Motorized half-wave plates
(HWP) followed by polarizing beam splitters (PBS) are used to vary the attenuation. The light power is measured by power meters (PM), further
attenuated by neutral density filters (NDF), and coupled into the single-mode fibers of the time-multiplexing detector (TMD). (b) Nonclassical
state generation. The pump light is spectrally tailored by a 4 f system, coupled into the KTP waveguide (WG) and blocked by a long pass filter.
The SPDC photons pass a bandpass filter (BPF), are separated by a PBS and coupled into the TMD. (c) TMD. Two input pulses are distributed
into 16 bins to obtain information about the photon number in each input as well as photon-number correlations between the beams.

0 or 1 mean click or no click in the corresponding time bin. This
gives 28 = 256 distinct single-mode events and 2! = 65536
two-mode events to reckon with. This number is well below the
limitations of our method; however, eight bins per mode seems
more than enough to reveal the subtle signal features, while
preventing signal-to-noise degradation. With a further splitting
of the modes, the dark counts would start to play a significant
role, decreasing thus the accuracy of the reconstruction. On the
other hand, an effective reduction of the number of bins can
always be done in postprocessing by combining the existing
detection channels.
We adopt a linear model of the TMD detection, so that

d—1 d-1

Pap = Z Z Caﬁ,mn P s (D

m=0 n=0

where d is the cutoff dimension required to accommodate the
relevant parts of the signal and the idler. The measurement
matrix C provides a complete description of the TMD,
including losses, detector efficiencies, and afterpulsing effects.

In a real experiment, we acquire the relative frequencies
fap after N random samples are drawn from the multinomial
distribution parametrized by p,g. Due to afterpulsing, it is not
possible to factorize the detection matrix in signal and idler
parts.

We also consider single-mode and heralded events; the
former (latter) are simply marginal (conditional) probabilities
of pyg. For these single-mode events, we look at the total
number of clicks (either in the signal or the idler), without
paying attention to the particular ordering of time bins. For
example, for the signal-mode reconstruction, such reduction
is readily done by summing data and patterns f, = >_ s Jop
over the 8!/[(8 — k)!k!] different permutations of « with the
same number k of nonzero binary digits.

III. FITTING DATA PATTERNS

From the measured data f,s we have to determine the
state P,,,. The standard detector tomography would proceed in
two steps: first, a detector estimation, where the measurement

matrix Cyg mn > 0 is inferred from a set of calibration states.
Afterwards, the state P,, > 0 is reconstructed from the
previously obtained detector matrix. However, this is not
completely satisfactory: the details of the TMD are not of
interest and, besides, the detector estimation is exceedingly
costly, scaling as d*, which makes the method impractical,
even for moderate values of this cutoff d.

The alternative data-pattern approach, we adopt here,
expresses P, as a mixture

M M
Pun=Y x: PS) = "x: P P, )
£=1 £=1

of M linearly independent (generally, nonorthogonal) two-
mode coherent probes {P,E,‘En)}, with positive and negative
weights {x¢}. This can be thought of as a kind of discrete gener-
alization of the P representation and can be straightforwardly
extended to any number of modes. As long as there is a match
between the number of linearly independent probes and the
number of free parameters, the decomposition is unique. For
overcomplete set of probes, the uniqueness is not guaranteed,
but all the feasible vectors x¢ result in the same solution. For
incomplete sets, the decomposition is, in general, unfeasible,
albeit partial tomography of the signal is still plausible.

We would like to stress that the actual field of view of the
setup is uniquely and operationally determined by the known
set of measured probes rather than some ad hoc truncation of
the search space. In our experiment, the photon-number distri-
bution of easy-to-generate coherent states, Pn(g) = [(n|a(®))%,
where |n) is a Fock state, serve as the probes and hence they
are termed coherent probes.

The responses foﬁ? of the TMD to these coherent probes
are called patterns. Then, by linearity, the data (i.e., the TMD
response f,p to an unknown state P,,) can be modeled as

M
fup = > xe £ 3)
£=1
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Hence, once the patterns and data are acquired (as outlined
in Fig. 1), the coefficients x¢ can be inferred from Eq. (3)
and the state reconstructed according to Eq. (2). To this end,
a suitable convex measure of the distance between the left-
and right-hand sides of Eq. (3) has to be minimized, subject
to the physical constraints P,,,, > 0 and Zmn P,, = 1:thisis
a quadratic program, for which stable algorithms, polynomial
in the size of the problem, are available [33].

Assuming a complete two-mode tomography (M = d?),
the number of free parameters in the data-pattern approach
scales as d? versus d* in the standard approach. Besides, the
advantage of the inversion (2) over the standard postprocessing
is evident. Concerning the complexity of the measurement,
we underline that, in contradistinction to standard detector
tomography, the number of parameters, M, here is independent
of the cutoff dimension d and, therefore, incomplete sets
of probes M « d”> can be measured and processed much
in the same way as complete ones, significantly decreasing
the measurement time. Such an incomplete tomography make
sense if some prior information on signal is available. Also, if
required, partial tomography can be performed by using only
a small part of the probes, e.g., only a few matrix elements, or
any linear function of them (such as the value of the Wigner
function at the origin) for the signal reconstruction in Eq. (3).
This indicates the great flexibility of this technique.

To create the probe states we use pulsed coherent light
attenuated at the single-photon level. The power of the
reference beam is changed by two motorized half-wave plates
followed by polarizing beam splitters. We calibrate the neutral
density filters separately and measure fiber-coupling losses.
From these values and the measured reference power, we
calculate the power inside the fibers of the TMD. Due to the
high degree of attenuation (of the order of 1 x 10~%), small
calibration errors (of order of a few percent) cannot be avoided,
although they affect the total losses but not the shape of the
photon statistics.

IV. RESULTS

We take into consideration a fixed number of patterns with
amplitudes below a given threshold ay,x & 2. This threshold
is important because of the afterpulsing, which seems to be
more pronounced for stronger states. The reconstruction is
repeated 100 times with randomly chosen probe subsets of size
M < 235 and averaged over those repetitions. In this way, the
redundancy in the data is propagated into the final estimate.

The variation within the set of reconstructions is used to
estimate the associated errors, much in the spirit of non-
parametric bootstrap [34]. In the experiment, Ny = 4.2 x 10°
events were registered for each coherent probe and SPDC
state. For low-intensity SPDC states, the data were averaged
over five repeated data acquisitions, making a total of Ngppc =
21 x 10° events. With these numbers, the statistical noise is
insignificant (except, perhaps, for heralded detections) and the
reconstruction accuracy is governed by systematic errors and
afterpulsing effects.

To check the performance for different parameter sets we
first performed a cross-validation [35] to verify whether the
estimated state is consistent with the observed data sample.
To this end, we checked the quality of the reconstruction
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FIG. 2. (Color online) Average infidelity versus the dimension of
the reconstruction space, ny,,. The number of patterns employed is
indicated by symbols: squares (50 patterns), triangles (80 patterns),
and circles (150 patterns). Open symbols are used for standard
detector tomography and solid ones for data-pattern tomography.

with random sets of coherent states discarded from the
probes, but with the same amplitude threshold (in our case,
o < 1). In detail: one run consisted in randomly selecting M
coherent states for probes and reconstructing all the remaining
coherent probes (within the amplitude threshold) from the
corresponding patterns. The size of the probes was varied to
see the effect of the dimension. This procedure was repeated
100 times and several thousand reconstructions were done for
each different size M = 50, 80, and 150 of the probe set.
Finally, all the reconstructions were compared with the known
true two-mode photon-number distributions.

To quantify the accuracy we employ the well-motivated
infidelity

I_F(ﬁmnspmn)zl_z ﬁmann (4)

between the estimate 13,",, and the true state P,,, although
the same conclusions are reached with other measures.
Furthermore, we apply the same procedure for the standard
detector tomography, so we can perform a fair comparison.

In Fig. 2, we plot the average infidelity as a function of
Nmax, Which is the maximum dimension of the the matrix P,,,
(i.e., 0 < m,n < npax). Except for very small reconstruction
dimensions, patterns largely outperform detector tomography.
Indeed, this latter technique fails for ny,,x > 5, whereas data-
pattern tomography improves remarkably as np,x increases.
In both cases, the number of probes slightly enhances the
performance. To get the data in Fig. 2, we have used linear
estimation and we have ignored the positivity constraint. Once
the physical constraints are incorporated, we get infidelities of
the order of 1%, which amounts to errors of a few percent for
the reconstructed elements of P,,,.

More probes give somewhat better results, but small sets
of probes can be surprisingly good. This is due to the small
variation across those patterns characterized by a small number
of principal components in the singular value decomposition.
To compare with the theory, we assume the SPDC distribution

(m)"

‘@’"" = (1+ <n>)1+n

Smn » (&)
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FIG. 3. (Color online) Two-mode reconstruction of the SPDC,
state. Left: Complete photon-number distribution, with M = 50
probes. Right: Comparison with the theoretical model. Circles with
error bars represent the experimental results, whereas theory is
indicated by squares.

together with a finite detection efficiency n which is taken into
account by a Bernoulli distribution:

Pon=3) ) (2) (f;) "L = P (6)

k=m {=n

From the zero-detection probabilities of coherent probes with
known amplitudes, the quantum efficiency of detectors was
estimated to be 0.22 £ 0.01 and the coupling efficiency 75%.
This, in turn, enables us to calculate the mean photon numbers
of the SPDC states: we generated three different ones, denoted
SPDC;, SPDC,, and SPDC3, with (n;) = 0.11, (n,) = 0.76,
and (n3) = 1.34, respectively. These numbers were used to
predict the two-mode statistics through Eqs. (5) and (6). In
Fig. 3 we plot typical results of two-mode TMD measurements
for SPDC,. Strong signal-idler correlations are observed
and the agreement with the theory is pretty good. Similar
results are found for other intensities. In Fig. 4 we show the
reconstructions of the signal states for two different pump
intensities. Best fits to Bose-Einstein distributions are almost
indistinguishable from the experimental results.

Heralded states are created by having the idler state condi-
tioned on single or double detection in the signal. By double
detection we mean here a click at detector A accompanied
by a simultaneous click at detector B. Double detections at
any single detector are discarded to avoid doubles caused
by afterpulsing. Heralded single- and especially two-photon
states are difficult to reconstruct, since we are picking out

£ 05 = 0.5¢

FIG. 4. (Color online) Single-mode signal reconstructions (dots)
of SPDC; (left) and SPDC, (right), both with M = 30 probes.
Best fits to Bose-Einstein distributions (squares) are also shown.
The reconstruction uncertainties are almost negligible and cannot
be appreciated.
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FIG. 5. (Color online) Reconstructed single-photon (left) and
two-photon (right) heralded idler states generated from SPDC; (top)
and SPDC, (bottom), with M = 80 probes. Squares denote again the
corresponding theoretical predictions.

quite a small subset of all the detection events. Besides,
afterpulsing creates artificial signal-idler correlations, whose
strength depends on the distance of the signal detection from
the first idler time bin. This leads to larger reconstruction
errors.

Reconstructed single- and two-photon heralded idler states
from two different SPDC states are shown in Fig. 5. To get the-
oretical predictions, we again assume an inefficient coupling
(0.75) of the SPDC state and calculate the postmeasurement
idler state P; from the premeasurement P as

Tr,(E P ET)

P=——r—r, 7
Tr,;(E P ET) ™

where ETE is the positive operator-valued measure (POVM)
element describing the single or double detection in the signal
mode and Tr, ; indicates trace over the signal or idler. All states
and POVM elements are diagonal here.

Best estimates of the Wigner function at the origin for
the single-photon heralded states are W(0) = —0.72 £ 0.06
(SPDC;) and W(0) = —0.30 £ 0.09 (SPDC;). This agrees
with the calculated values W(0) = —0.77 (SPDC,) and
W(0) = —0.29 (SPDC,), respectively, and confirms the non-
classicality of these states. With more intense SPDC inputs,
single detection in the signal tends to leave a mixture of Fock
states in the idler. This explains why the nonclassicality of
heralded states decreases with increasing pump intensity.

Finally, we also simulated heralded states as postmeasure-
ment states based on the results of full two-mode tomography.
To this end, we performed 100 two-mode reconstructions for
each measured SPDC state. The idler postmeasurement state
is calculated based on a presumed single or double signal
detection. The statistics of the resulting ensemble of heralded
states is shown in Fig. 6, along with the theoretical predictions.

These predictions based on the full two-mode reconstruc-
tions are less accurate than the single-mode heralded ones.
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FIG. 6. (Color online) Heralded single-photon (left) and double-
photon (right) idler states as predicted from the reconstructed two-
mode photon-number distributions of SPDC3, with M = 80 probes.

The latter is more direct. In heralded detections, what helps
is that the dimension of the search space is reduced and
the dominating vacuum or even single-photon terms are
eliminated, which improves the accuracy. In addition, in the
data-pattern approach we use heralded coherent probes; i.e.,
we do the same data selection as for the SPDC data. In this
way, one somehow eliminates the artificial correlations created
by the afterpulsing. Nevertheless, it is nice to see that the
agreement between single- and two-mode measurements is
actually pretty good. The two-mode predictions improve with

PHYSICAL REVIEW A 90, 042105 (2014)

increasing intensity, as one could expect. More intense SPDC
states have larger higher-order P,, components, which are
easier to extract.

V. CONCLUDING REMARKS

The experimental probing of a TMD device with cheap
coherent inputs and its subsequent use in the reconstruction
of nonclassical twin beams from SPDC presented here not
only demonstrates a successful implementation of this type of
data-pattern tomography, but also goes far beyond the standard
quantum detector tomography. The approach is easily adapted
to a variety of measurement devices: the recent implementation
in Ref. [30] and the experimental implementation presented
here show its viability for complex detectors.
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