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I. FITTING DATA PATTERN

For completeness, we give here the essential details of the
data pattern tomography [1, 2]. The PDC state is character-
ized by the two-mode photon-number distribution Pmn, where
the first (second) index refers to the signal (idler) mode. We
denote by pαβ the probability of simultaneous signal (α) and
idler (β ) detection. According to the experimental descrip-
tion, detections are represented by 8-digit binary numbers,
where 0/1 values mean click/no click in the corresponding
time bin. All in all, this gives 28 = 256 distinct single-mode
events and 216 = 65536 two-mode events to reckon with. This
is below the limitations of the method, however 8 bins per
mode are enough to reveal the subtle signal features, while
preventing signal-to-noise degradation. A further splitting of
the modes would increase the dark counts, decreasing the ac-
curacy of the reconstruction. Besides, an effective reduction
of the number of bins can always be done in post-processing
by combining the existing detection channels.

In a linear model of the TMD detection, we have

pαβ =
D−1

∑
m=0

D−1

∑
n=0

Cαβ ,mn Pmn , (1)

where D is a cutoff dimension. The matrix C contains full in-
formation about the TMD, including losses, detector efficien-
cies, and afterpulsing effects. In particular, aftepulses prevent
the factorization of C into signal and idler components.

We also assess single-mode and heralded events; the former
(latter) are nothing but marginal (conditional) probabilities of
pαβ . For these single-mode events, we look at the total num-
ber of clicks (either in the signal or the idler), without paying
attention to the particular ordering of time bins.

In a real experiment, we get the relative frequencies fαβ

after N random samples drawn from the multinomial distri-
bution parametrized by pαβ . From the measured data fαβ

we have to determine Pmn. The standard detector tomography
proceeds in two steps: first, a detector estimation, where the
measurement matrix Cαβ ,mn ≥ 0 is inferred from a set of cal-
ibration states. Afterwards, Pmn ≥ 0 is reconstructed from the
previously obtained matrix C. Unfortunately, this detector es-
timation is exceedingly costly, scaling as D4, which makes the
method impractical, even for moderate values of this cutoff D.

The alternative data-pattern approach ignores the details of

the TMD and casts Pmn as a mixture

Pmn =
M

∑
ξ=1

cξ P(ξ )
mn =

M

∑
ξ=1

cξ P(ξ )
m P(ξ )

n (2)

of M linearly independent (generally, nonorthogonal) two-
mode coherent probes {P(ξ )

mn }, with positive and negative
weights {cξ}. We can think of Eq. (2) as a kind of discrete P-
representation and can be straightforwardly extended to any
number of modes. As long as there is a match between the
number of linearly independent probes and the number of free
parameters, the decomposition is unique. For overcomplete
set of probes, the uniqueness is not guaranteed, but all the fea-
sible vectors cξ give the same solution.

We stress that the field of view of the setup is uniquely de-
termined by the known set of measured probes, rather than
some ad hoc truncation of the search space. In our exper-
iment, the photon-number distributions of coherent states,
P(ξ )

n = |〈n|α(ξ )〉|2, where |n〉 is a Fock state, serve as the
probes.

The responses f (ξ )
αβ

of the TMD to these coherent probes
are called patterns. Then, by linearity, the data (i.e., the TMD
response fαβ to an unknown state Pmn) can be modeled as

fαβ '
M

∑
ξ=1

cξ f (ξ )
αβ

. (3)

Once the patterns and data are acquired, the coefficients cξ can
be inferred from Eq. (3) and the state reconstructed according
to (2). To this end, a suitable convex measure of the distance
between the left- and right-hand side of Eq. (3) has to be min-
imized, subject to the constraints Pmn ≥ 0 and ∑mn Pmn = 1:
this is a quadratic program, for which stable algorithms are
available.

The advantage of the inversion (2) over the standard post-
processing is evident. Moreover, at difference of the standard
detector tomography, the number of parameters M is indepen-
dent of the cutoff dimension D and, therefore, incomplete sets
of probes M � D2 can be measured and processed much in
the same way as complete ones.

II. PARTIAL TOMOGRAPHY

It happens quite often that the full distribution Pmn is not
required for a specific purpose. For example, only a few ele-
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FIG. 1. Partial tomography of the antidiagonal terms of Pmn for dif-
ferent amounts of displacement of a PDC input state with r≈ 0.6. In
all cases, 10 two-mode coherent probes are used. Error bars are only
shown for one displacement to avoid symbol clustering.

ments of Pmn or a linear function of Pmn, such as parity, might
be enough. This is called partial tomography and finds ap-
plications in experiments with complex, highly-dimensional
systems, where a full tomography is impractical or even im-
possible. A nice feature of the pattern approach is that both
full and partial tomography are done in much the same way.

As a case study, we restrict Pmn up to four photons in each
mode (m,n = 0, . . . ,4) and we address exclusively the antidi-
agonal elements P40, P31, P22, P13, and P04. Without displace-
ment, the antidiagonal should be symmetric around P22; with
displacement, it is expected to become biased towards P40,
for displacement adds intensity in the signal mode and signal-
idler correlations tend to vanish.

This is confirmed in Fig. 1, where the reconstructed antidi-
agonal is shown for different displacements. Notice that a full
reconstruction of a Pmn in this case requires using 25 linearly
independent probes of size 25 each, whereas only 10 probes
of size 5 each were used here.

The method has also limitations. As an example, we choose
the extreme case where only one particular moment of the
state distribution Pn, say parity S, will be inferred. The par-
tial tomography

S = ∑
ξ

cξ S(ξ ) , (4)

where S(ξ ) = ∑n(−1)nP(ξ )
n , should be compared with the par-

ity resulting from the full state reconstruction,

S = ∑
n
(−1)nPn, (5)

where Pn = ∑ξ cξ P(ξ )
n ≥ 0. The partial tomography does not

involve physical constraints and therefore the data fitting be-
comes an unconstrained optimization problem. The full to-
mography, on the other hand, involves positivity check, mak-
ing the fitting a constrained optimization. This effectively per-
forms a regularization of the problem: unphysical estimates
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FIG. 2. Partial tomography of heralded idler parity (circles) com-
pared to parity from full state reconstruction (squares). Heralding by
up to fourfold coincidences in the signal beam is shown. PDC input
state with r = 0.93 and |α|= 0 was used.

are rejected. Hence, the latter technique is expected to be more
stable and perform better, especially with noisy data.

To illustrate this point, an experiment has been performed,
where idler-state parity was estimated by both partial and full
tomography. A moderately strong PDC state was prepared
without the reference beam stopped down and the idler state
was heralded by different signal detection events: no click,
single click, double click, and triple click. Given the intensity
in the signal, multiple coincidence events are highly unlikely
and heralding results in a strong reduction of idler counts. As
a consequence, statistical noise grows and this effect is com-
bined with other sources of systematic errors, such as after-
pulses. Heralding by no signal click, which is the most com-
mon strategy, should not pose serious problems. On the other
hand, we expect the tomography of idler heralded by triple
clicks to be rather involved.

-0.8

-0.4

0

0.4

0 1 2 3 4 5 6 7 8 9 10 11 12

P
n

n

full tomography
partial tomography

FIG. 3. Experimentally reconstructed idler photon-number distribu-
tions heralded by a signal fourfold coincidence event. Results of
constrained (red bars) and unconstrained (blue bars) pattern tomog-
raphy are shown. The corresponding parities are shown in Fig. 2 as
the rightmost pair of symbols.
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Figure 2 shows the reconstructed idler parities. Up to
double-click heralding, the results are as expected: the sign of
the reconstructed parity alternates and both techniques have
similar accuracy. The situation changes with heralding by
triple detection. In the case of full tomography, the result
is still meaningful, although we observe larger reconstruction
errors and the sign of the heralded Wigner function cannot
be longer resolved. However, partial tomography fails com-
pletely, reporting a nonsensically large parity and absurdly
large error bars.

The origin of this problem becomes apparent if we ana-
lyze the corresponding inferred idler distributions, which are
shown in Fig. 3. For parity measurements, partial tomography

is equivalent to full tomography with the positivity constraint
removed. Let P̃n be the underlying idler distribution obtained
by (partial) unconstrained pattern tomography. We see that
triple-click heralded P̃n is highly unphysical, with strongly
negative component P̃1 (blue bars), rendering the calculated
parity useless. Taking physical constraints into account, a
more reasonable reconstruction is achieved (red bars).

These results show that partial tomography can be helpful
in saving experimental and computational resources. How-
ever, one has to be careful when applied to noisy data. In this
case, extracting the sought after information from the full state
reconstruction seems to be a more robust approach.
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