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CORRELATION FUNCTIONS

Correlation functions, first introduced by Glauber [1],
are one way to characterize photon number statistics.
For example, varieties of nonclassicality criteria can be
constructed based on second and higher order moments
of the electromagnetic field [2, 3]. Such criteria identify
nonclassical fields directly from the measured statistics
in a loss tolerant way without complicated analysis tech-
niques and have been utilized with low order correlation
functions [4, 5]. Having access to higher order correlation
functions gives a more complete description of the under-
lying photon number statistics and increases the possi-
bilities in characterizing quantum states. For example,
exotic quantum states might only reveal their nonclas-
sicality when higher order correlations are included. In
this section we show that we are able to calculate these
higher order correlation functions.

We focus on correlation functions of the form g(n) =
〈a†nan〉
〈a†a〉n for one mode or g(m,n) = 〈a†mamb†nbn〉

〈a†a〉m〈b†b〉n for two
modes, where a, a† and b, b† are the usual annihila-
tion and creation operators. They can be calculated
from photon number probabilities pk using 〈a†nan〉 =∑
k

∏n−1
l=0 (k − l)pk.
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FIG. 1. Left: g(m,n) for the state with 〈n〉 = 20. Right:
Relative error obtained from a Monte-Carlo simulation based
on the measured probability distribution. Values up to g(40,40)

seem reliable. The asymmetry in the two modes arises from
asymmetric detection efficiencies.

In fig. 1 we show the two mode g(m,n) for the bright
state 〈n〉 = 20. We estimate the uncertainties of the
values by performing a simple Monte-Carlo simulation:
Based on the measured photon number probabilities,
we draw measurement frequencies from 8.2 · 106 events
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FIG. 2. Correlation functions g(n) for heralded states from
a PDC state with 〈n〉 = 7. Top: Comparison of experiment
and theory. Bottom left: Simulation with 8.2 · 106 events.
Bottom right: Expected standard deviation from a Monte-
Carlo simulation. Only the region left of the yellow area is
reliable with the given statistics.

and calculate the according correlation functions. From
10000 such trials, we calculate the standard deviations.
Values up to g(40,40) seem to have reasonably low values.
In fig. 2 we show g(n) values for heralded states from

the PDC state 〈n〉 = 7. For the error analysis, we per-
form the same Monte-Carlo simulation, though this time
based on theoretical probability distributions, due to rel-
atively low numbers of heralded events for higher photon
numbers. For example, the 35-photon herald happens
only about 1000 times. This is one reason, why the sta-
tistical uncertainties dominate already above g(10). How-
ever, the general agreement with theory is very good. Al-
most all values are significantly below one, which is the
bound for classical states.
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NONCLASSICALITY

Following [3], we construct the correlation matrix

M =


〈 : f̂†1 f̂1 : 〉 〈 : f̂†1 f̂2 : 〉 · · · 〈 : f̂†1 f̂N : 〉
〈 : f̂†2 f̂1 : 〉 〈 : f̂†2 f̂2 : 〉 · · · 〈 : f̂†2 f̂N : 〉

...
...

. . .
...

〈 : f̂†N f̂1 : 〉 〈 : f̂†N f̂2 : 〉 · · · 〈 : f̂†N f̂N : 〉

 ,

where ~̂
f = (1, n̂a, n̂b, n̂2

a, n̂an̂b, n̂
2
b , ..., n̂

N
b ), n̂a = a†a/2,

n̂b = b†b/2 and : : denotes normal ordering. If M has
at least one negative eigenvalue, the state is nonclassical.
This condition is fulfilled for all states presented here.
To estimate the uncertainties, we again apply a Monte-
Carlo simulation. In the best case, for the 〈n〉 = 7 state,
the lowest eigenvalue has a significance of more than 100
standard deviations. This shows the high quality of the
measured statistics.

LOSS INVERSION

To get a glimpse of how our states would look without
losses, we fit a model to the data. The model consists of a
state that can be described as a mixture of a (spectrally)
multimode PDC state, a coherent state and a thermal
state:

ρ = ρPDC(nPDC,K)⊗ ρα(nαs , nαi )⊗ ρth(nth
s , n

th
i ), (1)

where n are the respective mean photon numbers and K
the effective mode number of the PDC state. We expect
K to be low since the marginal g(2)(0) measurements
mentioned in the paper suggest K ≈ 1.13. We hence
choose exponentially decaying coefficients λ2

k for each
(spectral) mode, whereas

∑
k λ

2
k = 1 and K = 1/

∑
k λ

4
k

[6, 7]. The squeezing parameters for each (spectral) PDC
mode are given by rk = Bλk, where B is the overall op-
tical gain. Such exponentially decaying coefficients are
a reasonable approximation for low effective mode num-
bers.

The losses are described by a standard beam splitter
model with transmissions ηs and ηi in the two beam
paths. The photon number probabilities are given by
pout
kl =

∑
mn L

s
km(ηs)Li

ln(ηi)pin
mn, and Lkn(η) =

(
n
k

)
ηk(1−

η)n−k. In eq. 1, the photon number distributions of the
three contributions are independent. That means that
the total photon number distribution pin is a convolution
of the three individual distribution. This can be imple-
mented numerically in a straight forward way.

Finally, we minimize the weighted sum of the least
square differences∑

mn

((pmeas
mn − pout

mn)/σmn)2, (2)

FIG. 3. Inferred states before losses. a) High power state
(〈n〉 = 20) using a parameter fit to the data. b) Low power
state (〈n〉 = 1.4) using full loss inversion without assumptions
about the state.

where pmeas
mn are the measured photon number prob-

abilities, pout
mn the probabilities of the expected state

after losses and σmn = 1/N +
√
pmeas
mn /N es-

timates for the statistical error due to N total
events. Effectively, this is a fit with eight parame-
ters (ηs, ηi, nPDC,K, n

α
s , n

α
i , n

th
s , n

th
i ). Allowing Poisso-

nian and thermal background statistics covers most op-
tical and electrical background signals while keeping the
number of free parameters very low.
The fit result for the state with 〈n〉 = 20 is shown in

fig. 3 and has the fit parameters

ηs 43.13(3)%
ηi 52.12(4)%

nPDC 20.30(2)
K 1.097(1)
nαs 0.14(12)
nαi 0.38(5)
nth

s 0.00(12)
nth

i 0.00(5)

The fidelity with the data is 99.98%. The largest con-
tribution in photon number by almost two orders of mag-
nitude is the PDC. Furthermore, the effective mode num-
ber is low in agreement with the g(2)(0) measurements.
We can also regard such a fit as an efficiency estimation

that is not impacted by non-PDC counts. In the case of
our more efficient two-TES setup configuration with the
〈n〉 = 7 state, it suggests efficiencies of 64% and 68%.
For comparison, we perform a general loss inversion[8]

for a low power state with 〈n〉 = 1.4, shown in fig. 3(in-
set), restricting the space to < 15 photons. Again, the in-
verted state resembles the expected PDC state very well.
The number of free parameters is very high (152 − 1 in
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this example) such that general loss inversion becomes
infeasible for states with higher mean photon numbers.

METHODS: TRACE ANALYSIS

Each detection event of the TES is a voltage pulse
V (t) whose shape depends on the detected photon num-
ber. The characteristics of these traces are different for
each TES and the photon numbers cannot be well dis-
tinguished by peak height alone. However, good photon
number resolution can be obtained by simply using the
average trace as a template V̄ (t) and take the overlap∫
dtV (t)V̄ (t) to distinguish between photon numbers[9].

This method is ideal if the shapes of all pulses are similar
and works well for coherent input light. In our case, how-
ever, the full range of photon numbers is present and the
shapes are different for high and low photon numbers.
We therefore adapt this technique as follows: We cali-
brate the TES responses using coherent input light. For
20 different input power settings, we calculate the aver-
age traces V̄i(t) and calibrate the overlaps of each based
on the Poissonian photon number expectations. Since
Poissonian distributions are relatively narrow, this cali-
bration is only reliable around the respective mean pho-
ton numbers. Then, for an unknown detection event, we
calculate the overlaps with 20 templates giving 20 photon
number estimations, ideally all the same, and take that
particular estimation that is closest to the mean pho-
ton number of its template. This method extends the
range over which we can reliably resolve photon number
as compared to the one-template approach and even gives
reliable estimations of photon numbers beyond the single-
photon resolution regime. The clustering of the overlaps
can still be seen up to 20 photons in a histogram, allow-
ing for cross checking the calibration simply by counting
peaks. To estimate systematic uncertainties in the g(2)(0)
results of fig. 3, we rescale all templates slightly until the
photon numbers are clearly over- or underestimated giv-
ing a worst case (or maximum range) effect of our photon
number estimate on g(2)(0).
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