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We demonstrate homodyne detection of quantum states originating from a genuinely spatially and
temporally singlemode parametric downconversion source in non-linear waveguides. By using single
photon subtraction, we implement the distillation of squeezed states witnessing an improvement of
0.1 dB from an intial squeezing value of 1.62±0.01 dB, while achieving a purity of 0.58, and confirm
the non-Gaussianity of the distilled state via the higher order cumulants. With this we demonstrate
the sources suitability for scalable hybrid quantum network applications.

The quantized nature of light fields manifests itself by
the discretization of their energy content. But this prop-
erty does not provide any information about the under-
lying spatio-temporal mode structure. While monochro-
matic fields defined as standing waves in a box are typ-
ically taken as the standard formalism for field quanti-
zation, practical systems seldomly fulfill such clean the-
oretical conditions. The precise experimental control of
the spatial and temporal degrees of freedom of quantum
light has remained one of the major challenges of quan-
tum state engineering in the last decade.
Parametric downconversion (PDC) processes have be-
come the prevalent source for quantum light generation
due to their simplicity in implementation and their flex-
ibility for state control. The spatial modes of the pre-
pared states can readily be specified by either introducing
a cavity geometry [1–3] or by using waveguiding struc-
ture in a non-linear medium [4–6] and is in most ex-
periments designed to be singlemode. On the contrary,
the temporal mode structure of the generated state is
highly multimode and narrow-band filtering is frequently
applied. This however is not suitable for pulsed light
which is composed of many frequencies forming a coher-
ent wavepacket. In this scenario, we can define field or-
thogonal pulsed temporal modes (TM) which in recently
have been identified as a resource for multi-dimensional
quantum networking and techniques to control those pa-
rameters are under development [7, 8]. In particular,
these techniques have allowed us to limit the TM con-
tent up to a single mode which is one of the key achieve-
ments in the efficient generation of pure heralded single
photons [4, 5, 9–12]. This ability is a prerequisite for
pulsed quantum networking applications which rely on
the synchronization of state conditioning to realize scal-
able measurement-based quantum information schemes
with probabilistic outcomes.
In such applications, one generally distinguishes between
continuous and discrete variable protocols which effec-
tively only depend on the way the light is detected in the

final processing step. The single photon generation is
understood in the context of discrete variable (DV) sys-
tems where the photon counting methods are insensitive
to TMs which motivated the state engineering efforts.
Still, current linear network applications suffer signifi-
cantly from the trade-off between having noise contribu-
tions from multiphoton components and detection rates
[13]. In the framework of continuous variables (CV), mul-
tiphoton contributions in PDC are directly translated
into a higher degree of squeezing. Additionally, homo-
dyne detection provides an effective filtering on TMs de-
termined by the local oscillator (LO), however the detec-
tion method restricts the toolbox of quantum information
operations to Gaussian ones. This has been shown to be
insufficient for many pivotal quantum information pro-
tocols, such as entanglement distillation [14] or quantum
computation with quantum advantage [15, 16]. One way
to overcome this limitation is by combining both frame-
works in hybrid information processing schemes [17]. The
realization of CV entanglement distillation has been the
prominent example of hybrid systems [18–29], but these
experiments have also revealed the difficulties when deal-
ing with TM multimode sources and a priori incompat-
ible CV/DV detection apparati most of which can be
attributed to the need of optical filtering which is neces-
sary due to challenging mode-matching requirements.
In this letter, we perform homodyne detection on an en-
gineered PDC source of pulsed squeezed states with spa-
tial and temporal singlemode characteristics and demon-
strate squeezing distillation via photon subtraction with
high efficiency and state purities. This highlights the
suitability of our single-pass source based on an engi-
neered non-linear waveguide to realize hybrid quantum
information processing protocols in scalable optical se-
tups.
Considering a spatially and temporally singlemode
source, we can express the emitted two-mode squeezed
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vacuum states as

|Ψsq〉 =
√

1− λ2

∞∑
n=0

λn|n〉|n〉. (1)

where the photon number |n〉 = 1√
n!

(
Â†
)n
|0〉 in

a specific TM defined by the creation operator
Â† =

∫
dωf(ω)â†(ω) and the generalized squeezing pa-

rameter λ = tanh(B). To experimentally realize such
states, phasematching conditions and pump pulse prop-
erties need to support a factorable Joint Spectral Ampli-
tude function. It has been shown that such conditions
can be achieved via dispersion engineering [30], for ex-
ample in non-linear waveguides.
Our experimental setup is described in figure 1, a mode-
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FIG. 1. Schematic drawing of the experimental setup: the
master OPO driving the experiment is frequency doubled
to pump the PDC process while the remainder is spectrally
shaped to serve as the LO for the HD detection. We interfere
the signal and idler mode using a combination of half-wave
plate (HWP) and a polarizing beam splitter (PBS), creating
a single-mode squeezed beam which is then detected via a
homodyne receiver.

locked fs laser, at a repetition rate of 82 MHz, is pump-
ing a synchronously pumped optical parametric oscilla-
tor, central frequency at 1540 nm, wich is used to drive
our experiment. It is frequency doubled via a periodi-
cally poled lithium niobate crystal, generating the pump
for the SPDC process. The up-converted beam is then fil-
tered via a 4f-spectrometer in order to ascertain the spec-
tral decorrelation of the squeezed states via an optimized
pump spectral width [30, 31]. We generate these states
in a periodically poled potassium titanyl phosphate (PP-
KTP) engineered waveguide chip under a type-II phase-
matching. In order to achieve single TM emission, we
choose the pump bandwidth to be 2.3 nm and its central
wavelength to 769.6 nm so that we achieve the generation
of frequency degenerate signal and idler beams around
1540 nm.
After the waveguide, we compensate for the birefringence
of PPKTP so that signal and idler pulses temporarily
overlap again. We realize the photon subtraction by tap-
ping off a small portion of the two mode squeezed beams
via a 90/10 beam splitter and filtered by a bandpass
with 10 nm FWHM to suppress any background modes.

Thereafter, the modes are split using a polarizing beam
splitter and subsequently sent onto an avalanche photo-
diode (APD) each. Coincidence signals from the APDs
will then be forwarded to herald a successful photon sub-
traction in the signal and idler modes. Following the
brighter port of the asymmetric beam splitter, signal and
idler modes are interfered with each other on the combi-
nation of a half-wave plate and another polarizing beam
splitter to generate a pair of single mode squeezed beams
of which one is sent onto a homodyne receiver in order to
record the quadrature data. The mixing of both modes of
a two mode squeezed state here is the inversion of gener-
ating two mode squeezing by interfering two single mode
squeezed beam on a symmetric beam splitter [32].
We characterize the properties by a number of DV mea-
surement techniques using the APDs. A Hong-Ou-
Mandel interference measurement gives us a visibility of
0.75 when interfering the signal and idler beams. The
mean photon number 〈n〉 is estimated to be 0.56 pho-
tons per pulse which is equivalent to a two-mode squeez-
ing of 6 dB. Finally, we estimate the number of effective
time-frequency modes of our squeezed via a marginal g(2)

measurement . It results in a value of g(2) = 1.81± 0.05
and thus to an effective mode number of 1.23 [33].
By seeding the PDC process with a coherent beam at
1540 nm and measuring the optical power at the detec-
tion stage, we estimate the efficiency of the optical ele-
ments of the squeezing path to be 0.87. The optimiza-
tion of the homodyne receiver, mainly the modal overlap
between the LO and the squeezed state, is achieved by
using the visibility between the seeded PDC and an at-
tenuated LO as figure of merit. We optimize the visibility
by shaping the spectral amplitude and phase of the LO
beam utilizing a commercially available waveshaper (Fin-
isar waveshaper 4000s) and achieve a visibility of up to
0.91 between the seeded PDC and the LO field resulting
in a receiver efficiency of about 0.72, when taking the
quantum efficiency of 0.90 of the home-built homodyne
detector into account.

After having characterized the setup via DV meth-
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FIG. 2. Contour plots of the reconstructed Wigner functions
of the initial (right) and the distilled state (left) which is
strongly deformed along the P quadrature.

ods, we measure the marginals of the Wigner function
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sampled under a random angle due to the freely drifting
phase between signal and the LO. For this, we record
250000 oscilloscope traces with a span of 100 µs and a
sampling rate of 109 Samples

s each containing a single pho-
ton subtraction event surrounded by about 8000 squeezed
states not subject to the photon subtraction. We assume,
that the relative phase between squeezed light and LO
stays constant during this time interval. This allows us
to reconstruct the relative phase for every trace by using
the variance of the squeezed states as a reference and,
furthermore, allows us to directly compare the improve-
ment in the quadrature variance due to the squeezing
distillation.

Using the sorted homodyne data, we reconstruct the
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FIG. 3. The first few elements of the reconstructed density
matrices underlying the Wigner functions in Fig.2, for the
distilled the higher order photon components become more
pronounced as expected for this state.

density matrices for the distilled states and the squeezed
reference states by means of a maximum likelihood recon-
struction algorithm [34]. The results can be seen in fig-
ure 3. After successfully subtracting photons from both
modes, the even higher order photon number component
becomes more dominant for the distilled states which is
equivalent to an increase in the squeezing. This can also
be visualised when plotting the Wigner functions in fig.
2. While the undistilled initial state shows the expected
elliptic shape of a regular squeezed state, the distilled
state strongly deviates from this with an improvement
in the squeezing quadrature and an even larger elon-
gation of the Wigner function along the anti-squeezing
quadrature. These results are summed up in table I and
compared with a multi-mode theoretical model of the
experiment. The initial state has a quadrature variance
of −1.62± 0.01 dB relative to the shot noise as is ex-
pected when applying the overall system losses to the in-
ferred squeezing of −6 dB. Due to the distillation step,
this variance is improved to −1.72± 0.12 dB below shot-
noise. This value have been calculated from the sorted
raw data. Therefore, the statistics for the distilled events
is limited thus increasing the standard deviation when
compared to the undistilled squeezed state for which a
greater number of states have been sampled. The anti-

squeezing in the orthogonal quadrature however experi-
ences a noticeable increase from the initial 3.45± 0.01 dB
to 6.21± 0.11 dB above shot-noise after the distillation
procedure. This strong increase in anti-squeezing is ex-
pected and fits our theoretical model (see supplementary
material).
In table I, we compare the reconstructed density matri-

TABLE I. Comparison of the quadrature variances and the
purity of the reconstructed density matrices between the mea-
sured data and the results of multi-mode simulations

ρ̂sq ρ̂sq,sim ρ̂dist ρ̂dist,sim

Var(X̂)[dB] −1.62 ± 0.01 -1.67 −1.72 ± 0.12 -1.89

Var(P̂ )[dB] 3.45 ± 0.01 3.38 6.21 ± 0.11 6.06

tr(ρ̂2) 0.80 0.82 0.58 0.61

ces of the initial state ρ̂sq and the distilled state ρ̂dist
with the simulation results ρ̂sq,sim and ρ̂dist,sim from
the multi-mode model assuming the generation of a pure
squeezed state (see supplementary material). The figure
of merit in this case is the fidelity between density matri-
ces of the squeezed and, respectively, the distilled states
summed up in eq. 2.

Fdist = 99.8%, Fsq = 99.9% (2)

In Fig. 4, we illustrate the first four cumulants
κn, n ∈ {1, 2, 3, 4} of the Wigner function’s marginal dis-
tribution as functions of the quadrature phase, where the
projected quadrature is X̂θ = cos θ X̂+sin θ P̂ . In terms

of the central moments µn =
〈(
X̂θ − 〈X̂θ〉

)n〉
and the

mean value m1, the cumulants can be expressed in a com-
pact form as

κ1 = m1, κ2 = µ2

κ3 = µ3, κ4 = µ4 − 3µ2
2 (3)

Gaussian distributions, such as the Wigner functions
of pure squeezed states are fully determined by the first
and second cumulant, i.e. by the mean value and the
variance. Hence, particularly the higher order cumu-
lants characterize the peculiarities of the distilled state
[35]. The third and fourth cumulant are associated
with the skewness and the ’tailedness’ (kurtosis) of the
distributions. For the undistilled state, we find that,
apart from statistical fluctuations, only the variance
κ2(θ) = Var(Xθ) is non-zero and shows the expected
transition from squeezing Var(Xθ) < 1 to anti-squeezing
Var(Xθ) > 1. For the distilled state, we find a similar
behaviour for κ2(θ), however, with larger squeezing and
anti-squeezing values. Moreover, we find that the kur-
tosis κ4(θ) is non-zero and shows a clear trend to nega-
tive values when rotating the projected quadrature from
the squeezing to the anti-squeezing angle. A negative
kurtosis is a non-Gaussian feature showing that the dis-
tribution is flatter than a normal distribution. This fits
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FIG. 4. Cumulants calculated from the raw data of the initial
(right) and the distilled squeezed state (left) for different LO
phases binned in steps of 0.5 degrees: for the initial state,
all cumulants except for the variance are centered around 0,
as expected for a Gaussian state. The distilled state however
shows a negative kurtosis with increasing phase, strongly hint-
ing at its non-Gaussian nature.

well with the observed elongation of the Wigner function
along the P quadrature in figure 2 which is follows the
prediction of our theoretical model.
In conclusion, we have shown that source engineering of-
fers a practical solution to overcome the difficulties when
realizing hybrid quantum information protocols. This we
showcase by using our engineered PDC source of pulsed
squeezed states with high purity and amounts of detected
squeezing. We achieved these results using source engi-
neering, which we have shown to be a viable alterna-
tive to conventional approaches using spectral and spa-
tial filtering. We further demonstrated a possible ap-
plication of our source in hybrid quantum information
processing by realizing a squeezing distillation experi-
ment using this source. We detected an improvement
in the measured squeezing and confirmed the expected
non-Gaussian quadrature statistics using the higher order
statistical cumulants. All-together, these results high-
light the applicability of source engineering in a hybrid
quantum information processing context as well as the
suitability of our source to be a building block for the
realization of larger hybrid quantum networks and quan-
tum computers.
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SUPPLEMENTARY MATERIAL: DISTILLATION
OF SQUEEZING USING AN ENGINEERED PDC

SOURCE

Here, we briefly describe, how we theoretically mod-
elled our squeezing distillation protocol shown in the
main paper and which assumptions are made to result
at the theoretically expected values. We start with the
usual two mode squeezed vacuum state which is often
generated using a SPDC process in a non-linear material

|ψ〉 =
√

1− λ2
∑
n

λn|n, n〉 (1)

with squeezing strength λ = tanh(B) given by the para-
metric gain B. The generation process is usually de-
scribed in the Heisenberg picture as

|Ψ〉 = exp[− i
h̄B
∫
dωsdωif(ωs, ωi)

× â†s(ωs)b̂†i (ωi) + h.c.]|0〉. (2)

Here, the joint spectral amplitude (JSA) function
f(ωs, ωi) = α(ωs, ωi)Φ(ωs, ωi), which is the product from
phasematching function and the pump field envelope, de-
scribes the range of allowed signal and idler frequen-
cies in the PDC process at hand. In general how-
ever, the JSA can be decomposed in a set of mutu-
ally orthogonal modes using the Schmidt decomposition
f(ωs, ωi) =

∑
k ckgk(ωs)hk(ωi) with Schmidt coefficients

following the normalisation condition
∑
k c

2
k = 1 [5, 33].

As such, the state generated in a PDC process can be
rewritten in terms of the Schmidt decomposition which
results in general in a mixed state of a multitude of indi-
vidually two-mode squeezed beams

|Ψ〉 = exp[− i
h̄B
∫
dωsdωi

∑
k ckÂ

†
k,sÂ

†
k,i + h.c.]|0〉

=
⊗

k |ψ(k)〉. (3)

with the broadband mode creation operators
Âk =

∫
dω â(ω)fk(ω) and their mode dependent

squeezing strength λk = tanh(ck B).
To account for this multimode nature of the produced

PDC state is essential for the performance of our distilla-
tion protocol. In fig. 1, we show a graphic representation
of our protocol. After the generation of the signal and
idler beams, we independently split of a small part
and send it towards a pair of avalanche photodiodes
(APD). The remaining beams are interfered and finally,
the quadrature data of one of the output port of the
interference beamsplitter is recorded using homodyne
detection which is triggered by a successful registration
of a coincidence of the APDs. It is important to note,
that neither the beamsplitters nor the APDs exhibit any
mode-selective characteristic. Therefore, it is possible
that the APDs register coincidence events stemming
from photons in a mode orthogonal to the LO mode or
a combination of the LO mode and one other Schmidt
mode which in turn lead to a “false” trigger event which

homodyne
detection

coinc

90:10 BS

90:10 BS

90:10 BS

90:10 BS
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idler

signal

idler

APD1

APD2

cLO

cLO

ƞ1
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FIG. 1. Schematic picture of the distillation scheme used in
the paper. Signal and idler Photons are subtracted from a
randomly determined spectral mode after passing an asym-
metric beamsplitter with T = 0.9 and belong either to the
mode selected by the LO cLO or any of the other, orthogonal,
modes cLO. On the registration of a coincidence event be-
tween the two APDs, the homodyne data is taken and stored.

results in detecting an ordinary squeezed state with
the homodyne receiver or a state with only one photon
subtracted in either the signal or idler mode.
To appropriately model the experimental situation, the
measured state has to be in the form

ρ̂ = α0ρ̂sub(2) + α1ρ̂sub(1) + α2ρ̂sq (4)

the coefficients αi denote the relative frequencies of the
two photon subtracted state ρ̂sub(2), the one photon sub-
tracted state ρ̂sub(1), or the “ordinary” squeezed state ρ̂sq
and fulfil the condition

∑
αi = 1. The density matrices

describing the separate measurement outcomes are cal-
culated using analytic formulas given in [36].
In order to calculate the coefficients αi, we start calcu-

-4 -3 -2 -1 0 1 2 3 4

X [a.u.]

-4

-3

-2

-1

0

1

2

3

4

P
[a

.u
.]

Wigner function

m

0 1 2 3 4 n0
1

2 3 4
0

0.2
0.4
0.6
0.8
1

density matrix ρ̂mn

0.00

0.09

0.18

FIG. 2. Wigner function of the simulated state, given by eq.
4, for the parameters given by our experimental findings in
the main paper. Both show a good qualitative agreement
with the results of the state reconstruction performed on the
experimental data.

lating the detection probabilities of coincidences in the
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heralding arms starting from the initial state:

p(k)
mn = tr

(
|m,n〉〈m,n|kρ̂(k)

sq

)
(5)

The detection probabilities in the APD arms can
then be obtained via the binomial distributions
Li,j =

∑
j

(
j
i

)
ηi(1− η)j−i modelling the random linear

loss due to optical and detection loss described by η.

p
′(k)
m′n′ =

∑
m,n

Lm′m p(k)
mn Ln′n (6)

The indices {m,n} here represent the signal and idler
modes individually, while k denotes the order of the dif-
ferent spectral modes. To each of the subtraction detec-
tors, a detection probability ηi with i ∈ {1, 2} can be
assigned to. In general, these probabilities are of differ-
ent magnitude, in our simulations however, we assume
both of them to be identical.
Whereas, we calculate the different probabilities under
the assumption that only the first two Schmidt modes
are relevant due to the high value of g(2) and further
that the any photon number contributions of order higher
than two can be be neglected due to the overall heralding
efficiency η ≈ 0.02. We define shorthand expressions for
the probabilities of the different detection events as:

p′1100 = p
′(0)
11 p

′(1)
00

p′0011 = p
′(0)
00 p

′(1)
11 (7)

p′1001 = p′0110 = p
′(0)
10 p

′(1)
01

Using the normalization condition of the coefficients αi,
we model the ratio between the number of coincidences
stemming from the desired distillation events and the un-
wanted events to be given by the ratio of the respective
probabilities

α0

α1 + α2
≈ p′1100

2p′1001 + p′0011

(8)

The coefficients αi themselves are then given by the fol-
lowing expressions

α0 =
p′1100

p′1100+p′0011+2p′1001

α1 =
2p′1001

p′1100+p′0011+2p′1001
(9)

α2 =
p′0011

p′1100+p′0011+2p′1001

allowing us to construct the density matrix of the final
state. From there, we calculate the density matrix given
in eq. 4 and the Wigner function of the mixed final state
for our model, both shown in figure 2. The simulation
results show a good qualitative agreement with the ex-
perimental findings in the main paper with a squeezing
value of −1.89dB with an accompanying anti-squeezing
value of 6.06dB relative to shot noise. The lower anti-
squeezing value can be attributed to the assumption of
the generation of a pure state in PDC crystal and the
neglection of any processes introducing excess noise.


	Distillation of Squeezing using an engineered PDC source
	Abstract
	 References
	 Supplementary Material: Distillation of Squeezing using an engineered PDC source


