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The origin of non-classicality in physical systems and its connection to distinctly quantum features
such as entanglement and coherence is a central question in quantum physics. This work analyses
this question theoretically and experimentally, linking quantitatively non-classicality with quantum

coherence.

On the theoretical front, we show when the coherence of an observable is linearly

related to the non-classicality of its measurement statistics, as quantified by the degree of violation
of the Kolmogorov conditions. Experimentally, we probe this connection between coherence and
non-classicality in a time-multiplexed optical quantum walk. We demonstrate exquisite control of
quantum coherence of the walker by varying the degree of coherent superposition effected by the
coin, and we show a concomitant variation in the degree of non-classicality of the walker statistics.

Introduction.—Which predictions of quantum mechan-
ics can and which cannot be reproduced by means of
any plausible classical theory? This question is at the
foundation of upcoming quantum technologies including
sensing, computation and communication [1]. At a more
fundamental level, the question is central to determine if
certain phenomena are genuinely quantum, for instance
in biological or thermodynamical systems [2-7].

Different strategies have been developed to assess the
quantumness of physical systems without having to rely
on the knowledge of the microscopic details of the sys-
tem at hand. These strategies rely, instead, on directly
evaluating the probability distributions of the measure-
ment outcomes with respect to specific traits of classical
statistics, such as locality [8], non-contextuality [9, 10],
and measurement non-invasiveness [11]. In particular, the
latter means that one can access, at least in principle,
the value of an observable without altering the statistics
associated with its sequential measurements at different
times. Non-invasiveness is indeed strictly related to the
Leggett-Garg inequalities [12-15]; as well as to the notion
of non-signalling-in-time [16-18]; and, ultimately, to the
very defining property of classical stochastic processes,
i.e., the validity of the Kolmogorov (consistency) condi-
tions [19, 20].

Moreover, the notion of non-classicality of multi-time
statistics as specified above is intimately connected with
a key resource of quantum systems, namely quantum
coherence [21, 22]. Specifically, Ref. [23] shows that, under
precisely-defined circumstances, the statistics obtained
from sequential measurements at different times cannot
be traced back to classical statistics as defined by the
Kolmogorov conditions [19], if and only if coherences are
first generated and subsequently turned into populations
in the course of the evolution. The current work further
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analyses this connection theoretically and demonstrates
its validity in a photonic quantum-walk experiment.

Quantum walks represent a well-established framework
to investigate to what extent we can detect and control
intrinsically quantum behaviours [24-34]. An especially
promising platform is that of time-multiplexed optical
quantum walks [35-39], wherein the position degree of
freedom of the walker is encoded into the time domain
and the coin degree of freedom is encoded in the polari-
sation of light. Such a platform enables controlling the
couplings between different positions and therefore of the
coherences present in the setup. Moreover, coherences are
conserved for many steps of the dynamics because of the
low experimental de-phasing values afforded by the sta-
ble optical feedback loops comprising the setup. Finally,
the possibility to out-couple deterministically the optical
signal in the course of the evolution via fast electro-optic
modulators addressing individual positions of the walker
allows one to probe measurement-induced effects into the
statistics of the walk [40].

In this work, we study theoretically and experimentally
the relation between non-classicality and quantum coher-
ence. Theoretically, first we make quantitative the con-
nection between quantum coherence and non-classicality
derived in Ref. [23]. Specifically, we show that the viola-
tion of the Kolmogorov conditions is directly proportional
to the amount of quantum coherence (of the measured
observable) that is first generated and later detected.
We then verify experimentally such a relation in a time-
multiplexing quantum walk using the setup depicted in
Fig. 1. Non-classicality is measured by performing sequen-
tial measurements of position and coin. The evolution
of quantum coherence in the setup is tuned by control-
ling the coupling between walker positions. By changing
the coherences, we can tune the violation of the Kol-
mogorov conditions, thus witnessing a controllable impact
of measurement invasiveness and the departure from any
classical description of the walk. We demonstrate un-
precedented control and intermediate measurements in a
multi-step quantum walk, in this way fully appreciating
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FIG. 1. (a) Schematic of the implemented setup. See
text for working principle and meaning of acronyms. Quan-
tum walk configurations without (b) and with (c) in-
termediate measurements. (b): Evolution over N steps,
without any intermediate measurement. (c): Evolution in
which all but one mode are out-coupled after step M to per-
form an intermediate measurement. N = 6 and M = 3 in these
sub-figures. The short black bars in (¢) depict out-coupling of
the light. The beam splitter symbols depict the coin toss in
addition to the usual PBS operation. The blue and red lines
denote the horizontally and vertically polarised light, which
are shifted to the right and the left respectively.

the non-trivial behaviour of quantum coherence and its
effects on non-classicality.

Background: non-classicality and quantum coher-
ence.—Here we detail the framework that we consider
in our analysis and provide relevant definitions for
non-classicality and coherence. Experimentally, we fo-
cus on a discrete-time quantum walk on a line, asso-
ciated with the Hilbert space spanned by the states
{lz,¢) = |z) ® |0)} e e—m v » Where @ denotes the posi-
tion of the walker and ¢ the value of the coin, acknowl-
edging already its experimental realisation in horizontal
(H) and vertical (V') polarisation. Henceforth, we use the
term coin and polarization interchangeably depending on
the context. The initial state is taken to be of the form

po = lzo) (ol @ (p[H)(H| + (1 =p) [V){V]), (1)

and the evolution is fixed by a unitary operator U acting
on both the position and coin degree of freedom, so that
the global state after IV steps is py = UN po, with the
unitary super-operator [41] Up = UpoUT. Although our
experimental realization is based on quantum walks, the
explicit form of the unitary need not be specified for the
theoretical treatment presented here. Even more, the
following analysis is valid for a broad class of quantum
processes and initial states as discussed in Appendix A.
The non-classicality of quantum processes can be ob-
tained unambiguously from sequential measurements of

the same observable at distinct times [23, 42, 43]. These
tests of non-classicality compare the statistics obtained
from one-shot projective measurements at different final
times and the statistics involving projective measurements
at intermediate times, thus witnessing the unavoidably
invasive nature of measurements in the quantum domain.
Specifically, let Py, ,(x,c, N) be the probability of hav-
ing the position x and the coin in ¢ after N steps, given
initially the position ¢ and the coin value H with proba-
bility p as in Eq. (1). Moreover, let Py, ,(x, ¢, N|y,c', M)
be the probability of the walker being at position x and
the coin in ¢ after N steps, but now conditioned on the
fact that after M steps the walker was in position y and
the coin in ¢’ (once again, given the initial state fixed by
zo and p). The Kolmogorov conditions [19] imply that
whenever the statistics of the sequential measurements
can be described via a classical stochastic process, the
quantity

Kaop = Z ’ Zszp(IL‘,c, Nly, ', M) Py, p(y, ¢, M)

z,c  y,c’

_Pro,p(xﬂch) (2)

is equal to 0 for any zg and p. Conversely, any value of
Kz,.p # O signifies the invasiveness of the measurement
performed at the intermediate time M. In particular, a
non-zero value would exclude any classical description of
the walk, given in terms of the walker possessing definite
(even if unknown) position and coin values at all times,
which are accessed by the ideal projective measurements
without altering the subsequent walk. A quantifier of non-
classicality similar to K, , has been introduced in [44].

The violation of the Kolmogorov conditions is directly
linked to the coherences of the measured observable (i.e.,
values of the off-diagonal elements of the density matrix
expressed in the basis of the measurement operator) that
are generated by the evolution and subsequently turned
into populations (i.e., the diagonal elements of the density
matrix). In particular, in Ref. [23] a one-to-one correspon-
dence between non-classicality and coherence has been
established under the assumptions that the observable is
not degenerate and that the memory effects in the multi-
time statistics can be neglected, or more precisely, that
the quantum regression theorem [45-49] holds.

Quantitative connection between non-classicality and
quantum coherence.—Here we show that it is possible to
make a stronger claim, relating quantitatively the degree
of violation of the Kolmogorov conditions, as quantified
via Ky, p, defined in Eq. (2), to the amount of coher-
ences which are generated and turned into populations
during the evolution. It is this connection that opens
the possibility of experimentally controlling the degree of
non-classicality by tuning the coherences in the system,
as described below.

Consider the quantity [23]

Con = (A 0UN 0 Aot™ — Aott™) o], (3)



where o denotes the composition of maps, A =
Y wel®e) (@, cl - [z, c)(z,c| is the total dephasing map
with respect to the measured observable, which in our
case is associated with the joint values of the position
and the coin, and | - ||; is the trace norm. The measure
C;,,p quantifies the coherences generated and detected
by the dynamics. More precisely, C,, , = 0 if and only if,
starting from the state pp in Eq. (1), no coherences can
be generated during the first M time steps and detected
with a measurement after IV steps of the dynamics. This
notion is strongly connected to important concepts in
coherence theory, including the maximal set of incoherent
operations and the coherence non-activating set [50, 51],
as discussed in [23].

We focus now on unitary evolution, which is reason-
able for our quantum-walk experiment because of its low
dephasing rates. The restriction of unitarity is however
not strictly required and we show in Appendix A that the
same relation can be derived whenever more general as-
sumptions hold (namely Lindblad dynamics and quantum
regression theorem). The quantifier defined in Eq. (3)
can be expressed with respect to one-time probability
distributions, according to

Caop = Z ’ ZP%C’ (z,¢, N — M) Py, p(y, ¢, M)

z,c  y,c’

_Pmo,p(xaca N) (4)

(where, with a slight abuse of notation, we denote as Py .
the probabilities when the initial state is |z, ¢)). Using
once again the unitarity, we can then see that

K Caop- (5)

To,p —
Eq.(5) is the key relation, whose experimental verification
is reported in the following of the paper. Crucially, it
tells us that controlling the amount of coherences which
are generated and turned into populations is equivalent
to controlling the degree non-classicality of the quantum
walk. Importantly, such a conclusion can be drawn re-
lying directly on the probability distributions associated
with one-time and two-time sequential measurements of
the relevant observable; e.g., no full state or process to-
mography with respect to the position and coin state is
needed, which would be certainly a challenging task in
most platforms.

FExperimental setup.—Here we present the salient fea-
tures of the quantum-walk experiment performed to in-
vestigate the correspondence between non-classicality
and coherence, and especially of the relation Eq. (5).
Each step of a quantum walk comprises two op-
erations U = SC, where the coin flip C =

cos(f) sin(6)
L. ® <sin(9) —cos(0)
gree of freedom, while the conditional shift opera-
tor S = 37, (lz +1)(z| @ [H)(H| + |z — 1)(z| @ [V)}(V])
moves the walker on the line to the right (left) when its
internal coin state is |H) (|]V)). These operations are

> acts only on the coin de-

realised with a well-established time-multiplexing archi-
tecture [35-39] based on an unbalanced Mach-Zehnder
interferometer as shown in Fig. 1(a).

The walker is implemented using a coherent laser pulse
(depicted as arriving from the left in Fig. 1) at a wave-
length of 1550 nm with adjustable initial polarisation as
the coin degree of freedom. Such states of light can be
used to implement single-particle quantum walks because
of the equivalence between single photons and coherent
states under quantum walk evolutions (See Appendix B
and Ref. [52]).

The experiment proceeds as follow. First, a
polarisation-dependent splitting is carried out by a
polarising beam splitter (PBS) denoted PBS 1 in
Fig. 1(a). Subsequently, single-mode fibres (SMFs)
translate the walker position into the temporal do-
main by introducing different delays in the two arms.
The setup is closed by an optical feedback loop,
thus implementing a conditional shift operator S =
>0 (lz + 1)(e| @ [H)(H| + |2 — 1)z @ [V)(V]) ,which
moves the walker on the line to the right (left) when
its internal coin state is |H) (|V)). Dynamic switches
implemented via electro-optic modulators (EOMs) route
the pulses either to the detection or back into the feedback
loop. Thus, they capacitate control over whether the
dynamics is continued or interrupted and enable the
intermediate measurements. Pulses continuing in the
feedback loop will be subjected to the coin operation
C implemented by a half-wave plate (HWP) before
the polarisation-dependent split is repeated, i.e. they
continue the evolution governed by the unitary U. On
the other hand, the light emitted out of the feedback loop
(from port C) is led to the polarisation-resolving detection
unit comprising another PBS and two superconducting
nanowire single-photon detectors (SNSPDs) where the
evolution ends.

The fast EOMs can address individually the different
positions values within the walk and thus enable imple-
menting position- and coin-dependent out-coupling. Such
out-coupling corresponds to position-dependent losses,
which can be harnessed to perform measurements at in-
termediate steps of the evolution. Fig. 1(b) depicts the
unperturbed evolution of the walker over N steps. At the
end of the evolution, all the light is coupled out and mea-
sured. The corresponding intensity profiles provide the
probability distribution Py, ,(x,c, N), for different values
of the final position x and polarisation ¢. In contrast,
Fig. 1(c) depicts out-coupling of all but one mode, i.e.,
one polarisation at a specific position, in an intermediate
step M of the evolution. For any walker in this chosen
mode, the walk is continued up to step N and the inten-
sity distribution measured. Any photon detected after
N steps would have occupied the chosen mode at step
M, which means that the selective out-coupling corre-
sponds to a projective measurement of the position and
coin of the walk. This allows us to register the probabil-
ities Py, p(z,¢, Ny, ', M) of a walk over N steps, with
an intermediate measurement at step M. We note that
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FIG. 2. Visualisation of the quantum coherence generated and detected by the dynamics. (a): Probabil-
ity distribution Py v (z,c, N) as a function of the position x and polarisation c¢. (b): Combined probability distribution
> y.e Py (¢, N/2)Pov (y,¢', N/2) as a function of 2 and c. These probabilities define the generation of coherences in the
first N/2 steps and their detection after N steps as presented in Eq. (4). (c¢): Difference between the two distributions. This
difference signals the coherences that are generated and converted into populations during the walk. For all panels, the initial
polarisation is V| the initial position 0 and N = 20; different rows depict different coin angles 0; different columns correspond to

different positions x with coin value V' in blue and H in red.
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FIG. 3. Linear relation between coherence and non-
classicality. We plot on the abscissa the quantifier Co,,
of coherences generated and detected as defined in Eq. (4)
and on the ordinate the degree Ko, of nonclassicality as
defined in Eq. (2), for initial polarisation cg = H (circles)
and co = V (crosses). The black line represents the expected
proportionality relation as in Eq. (5). Different points refer
to different coin angles. Error bars are generated from a
Monte-Carlo approach detailed in Appendix C. A systematic
deviation observed in the higher-than-expected Ko ., values
can be explained by imperfect intermediate measurements as
described in Appendix D.

only light intensity measurements, rather than correlation
measurements, are required to be performed at the end
of the walk to obtain the desired probabilities.

By altering the angle of the HWP fixing the coin oper-
ation C, different quantum walks can be realised. In this
way, we can control the amount of coherence generated
and detected, and consequently the degree of violation of
the Kolmogorov condition according to Eq. (5).

FExperimental results—We report now the quantum

coherences that are generated and detected at different
steps of our time-multiplexed quantum walk experiment,
and how these are unequivocally related to the degree of
non-classicality of the walk itself. We consider three con-
figurations. The first two comprise the standard quantum
walk of, respectively, N = 20 and M = N/2 = 10 steps,
with the preparation of an initial state py as in Eq. (1)
and the measurement of both the position and the coin
at the end of the walk as depicted in Fig. 1(b). This mea-
surement corresponds to recording the intensity of light
at for different positions and polarisations. Results from
these two configurations are enough to reconstruct the
coherence quantifier C, , of Eq. (4). On the other hand,
to evaluate the non-classicality quantifier K, , defined
in Eq. (2), we realize a third quantum-walk configura-
tion, involving both an intermediate measurement after
M = 10 steps and the final measurement after N = 20
steps as depicted in Fig. 1(c). We take the initial posi-
tion xg = 0 and the initial pure horizontal or vertical
polarisation states; the statistics corresponding to other
initial conditions as in Eq. (1) can be obtained using the
spatial translational invariance of the setup and mixing
the probabilities related to pure polarisation states.

In Fig. 2(a), we present the probability distribution
Pyv(z,c, N) obtained from one-shot position and coin
measurements after N = 20 steps. Fig. 2(b) depicts the
quantity >, . Py (z,¢,N/2)Py,v(y,c’,N/2), which is
obtained by combining one-shot probability distributions
obtained from different outcomes of position and coin mea-
surements after M = N/2 steps. The difference between
the two distributions, reported in Fig. 2(c), provides us
with a clear visualisation of the amount of position and
coin coherences which are generated and subsequently
turned into populations in the course of the quantum
walk, see Egs. (3) and (4). Indeed, the value of the coin
angle determines the coupling between different positions
in the walk via the coin degree of freedom, in this way
influencing the generation of coherences and consequently



their transformation to populations. The different rows
of Fig. 2 show how a more balanced coin leads to more co-
herences and therefore to larger differences in the plotted
quantities.

Most importantly, the two-fold interconversion be-
tween populations and coherences can be related quan-
titatively to the non-classicality of the quantum walk,
according to Eq. (5). In order to verify experimentally
this relation, we measure the probability distributions
Pyco(z,c, Ny, ', M) (both for initial polarisation co = H
and ¢g = V) associated with the third configuration,
which involves an intermediate measurement of the posi-
tion and the polarisation after M = 10 steps and a final
measurement after NV = 20 steps. Combining these prob-
abilities with those obtained from the previous one-shot
measurement runs, we can obtain the degree of violation
of the Kolmogorov condition Kg ., as defined in Eq. (2),
for different values of the coin angles and initial coin val-
ues. The results are reported in Fig. 3, where Kg, is
plotted against the corresponding value of the generated
and detected coherences Cy .,. The equivalence expressed
in Eq. (5) is well confirmed by the experimental data,

within the error bars. This proves a correspondence be-
tween the evolution of coherences and the non-classicality
in our setup, which is not only qualitative, but strictly
quantitative. As a consequence, we can state unambigu-
ously that increasing the amount of coherences generated
and detected gives a strategy to enhance the deviation of
the quantum walk from the classical realm.
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Appendix A: Quantitative relation between
non-classicality and coherence.

Here we show that Eq.(5) of the main text can be
derived under the assumptions considered in [23], which
contain the framework described in the main text as a
special case.

Let us consider a system whose state at time ¢ is denoted
as p;, and whose evolution between 0 and ¢ is governed

by the Lindblad equation [41, 47]

d
—pr = Lp, (A1)

dt

S (i )

J

where H = H' and ﬁj are linear operators on the Hilbert
space associated with the system, and c¢; > 0 Vj; the
corresponding evolution can be represented by
pr = €e""po (A2)
in terms of the generator £ of the dynamics. The discrete-
time unitary case described in the main text is obtained
when ¢; = 0 for any j, so that e** = U, and Uipy =
mpol':fj, with U, = e~** and considering ¢ = Nét, for a
fixed 0t and different values of .
Moreover, we consider sequential projective measure-
ments of the observable X, associated with the non-
degenerate self-adjoint operator X =" x|z)(z|. For a

fixed initial state po, which is diagonal in the eigenbasis
of X,

po = pelw)al. (A3)

we can quantify the amount of coherences (with respect
to eigenbasis of X ) which are generated up to a time s
and subsequently turned into populations at time ¢ via
the quantity

Cpo = [[(2 oS00 A0 et —a0et) oo, (A1)

where A = 3" |x)(x| - |z)(z| is the total dephasing map
with respect to X. The difference between the two terms
in the definition of C,; describes how the action of the
total dephasing map A at an intermediate time s, which
destroys the coherences generated up to that time, will
impact the population at a later time ¢. Indeed, this
provides us with a quantifier of those coherences generated
up to the time s which are mapped into populations at .
The situation we treated in the main text is recovered by
identifying = with both the position and the coin values
of the walker, setting ¢t = Nt and s = Mdt, as well
as restricting pg to the state in Eq.(1) of the main text;
further assuming a unitary evolution, Eq.(A4) reduces in
fact to Eq.(3) of the main text.

Now, denote as P, (z,t) the probability to get the out-
come x with a projective measurement of the observable
X at time ¢, having the initial state po, i.e.,

Ppo (xa t) =tr {PmeﬁtPO} - <$| eﬁtp() |:L'> ) (A5)
where we introduced the projector super-operator P, =
|x) (x| - |z) (x| and every super-operator acts on everything
at its own right. One can then easily see that, analogously
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to Eq.(4) of the main text, the quantity in Eq.(A4) can
be equivalently written as

S S partey

where again with a slight abuse of notation we denote as
P, the probabilities when the initial state is |z).

Let us move to the statistics associated with sequen-
tial measurements of X at different times. Consider
in particular the two-time joint probability distribution
P,,(z,t;y,s) of having outcome y at the intermediate
time s and = at time ¢t > s for an initial state pg, as
well as the conditional probability P, (z,t|y,s) of having
outcome x at time ¢, given that there was the outcome
y at time s (for an initial state pg), which is of course
defined as

Po(ya ) Pﬂo(xvt)v (AG)

Ppo(x7t;ya S)
PPO (ya S)

We can then introduce the non-classicality quantifier

KPO = Z ’ pro(x’t‘y7s)PP0(y’s) - Ppo(x’t) ) (A7)

Ppo (xa t|ya 5) =

which indeed reduces to Eq.(2) of the main text for pg
given by Eq.(1) in the main text, t = Ndt,s = Mot and
x denoting both the position and coin of the walker.

Now, if we assume that the joint probability can be
written according to the quantum regression theorem,
as [45, 49]

P, (x,t;y,s) = tr {Pweﬁ(t_s)Pyeﬁspo} , (A8)
we directly get
Poo(a,tly,5) = Py(a,t - 5), (A9)
which leads us to, see Egs.(A6) and (A7),
Kpo = Cpo‘ (A10)

We thus conclude that Eq.(5) of the main text can be
properly generalised, whenever we consider sequential
projective measurements (at generic times s and t) of
any non-degenerate observable of a system whose state
is initially diagonal (in the eigenbasis of the measured
observable) and then undergoes a Lindblad evolution, and
the two-time probabilities satisfy the quantum regression
theorem.

Appendix B: Equivalence of Coherent Light and
Single Photons

The objective of our experimental work is the investi-
gation of the evolution of the wave function of a photonic
walker, i.e., a single photon. Here we show that by inves-
tigating coherent pulses of indistinguishable photons in

the same state |¥), we observe the same evolution as for
single photons as detailed in [53].

We start by defining the creation operator &;f which
creates a photon in the i-th mode of the vacuum state

= 101,02, ..., 14,0551, ..., Og(np1)) - (B1)

For an evolution over N steps the number of possibly
occupied position modes equals N + 1. Taking the polar-
isation into account, we consider a space H = Hy ® He
with the dimension 2(N + 1).

The evolution of a single photon is governed by a passive
linear optical transformation, whose effect on one photon
is independent of how many photons are evolving. More
precisely, consideran evolution of the photon that can be
described with the unitary evolution operator U acting on
‘H and the creation operator dg of the initial state: after
the N-th step, the evolved single-photon state is given by

ZA N)al|oy,

where A;(N) denotes the probability amplitude of the i-th
mode in step N. Accordingly, the probability P(m, N) to
measure the walker in mode m in the N-th step, is given
by the following expression:

P(m,N) =|( m|ZA N)af|oy[?

In order to simulate the evolution of a single photon
with coherent light, the presence of one photon must not
influence the evolution of another. Thus, we take a look
at the evolution of the wave function for n photons, which
is given by the following term:

1

1 ~T\n
7 = ﬁ(Xi:Ai(N al

To see whether the probability distribution for the out-
come of the experiment is altered by additional photons,
we determine the probability P(m, N) of a measurement
event in the m-th mode after N steps for the simplest
case of n = 2. We thus have

(B2)

= |Am(N).

(B3)

(ONa)" (B4)

P(m,N)
= ms 1 Ai( Ar(N)a})|0)”
S s

+ wﬁ(Z A(N)al)
_ Z |A;(N

Jj#m
NP 1A (NP
J

— | An (V).

O~ An(V)ag)|o)?
k

)P Am(N)] + [Am (V)

(B5)



The above expression, derived for two photons, equals
(B3), which describes the one-photon case. Consequently,
we see that the probability for a measurement event in
mode m is unaffected by the presence of another photon.
Knowing that an additional photon does not have an
effect, the statement can be extended to arbitrarily large
number of indistinguishable photons that are initially in
the same mode of |¥).

In the next step, we examine the evolution of coherent
states, which, in the photon-number representation, reads
(with « being the eigenvalue of the creation operator):

la) = e—la\2/2 oal )0y = —|0é\ /2 Za 0 ),
where, crucially, we consider the case where all photons
are created in the same mode. The resulting quantum
walk is indeed obtained by including the single-photon
evolution operator U as

(B6)

e~lal?/2 gal%ah o)

_o—lal?/2 | o, Aunal

e e |0) (B7)
_ola?/2
o S (S Ao

Each term in the final line of Eq. (B7) is of the same form
as Eq. (B4), which allows us to determine the probability
of a measurement event independent of the presence of
another photon. Consequently, we can determine P(m, N)
analogously to what done in Eq. (B5), thus getting

Pa(m, N) = |(1pp|e~ 12172 aZA N)al|0)?
(B8)
=e7lol o) IAm(N)IQ-

Thus, the difference of a coherent state evolution as
compared to a quantum walk conducted with single pho-
tons is merely a pre-factor depending on «, which affects
the overall probability of a measurement event, but not
their distribution over the modes. The relation found
here is crucial for our experimental work as it shows that
quantum walks of single photons can be simulated with
coherent light. Consequently, the experiment does not
require a single photon source, saving a lot of experimen-
tal resources. The results obtained for a single occupied
input position of course do not mean that there is never
a difference between a quantum walk conducted with co-
herent light and a quantum walk with single photons. As
an example, when considering coincidences in a quantum
walk initialised at more than one position, qualitative
differences between coherent states and single photons
might arise. As our current experiment does not rely on
coincidences, but on uncorrelated intensity measurements
only, the mapping from coherent states to single photons
is valid. A more detailed discussion of using coherent
states to simulate single-particle quantum walks can be
found in [53].

Appendix C: Monte-Carlo-based Error Estimation

In order to obtain a numerical estimation for the effect
of experimental inaccuracies, we conduct a Monte-Carlo-
based error estimation. The error estimation procedure
is based on the assumption that the main source of errors
in the experiment is the imprecision in the quantum walk
parameters, including the coin angle and losses at out-
coupling. This assumption is reasonable for our optical
setup because the variance from shot noise and detection
imperfection is much smaller than the above-mentioned
imprecision. The quantum-walk parameters are subject
to measurement imprecision because of how they are
set or measured: the coin angle is set manually using
a scale with finite accuracy, while the losses from cou-
pling inefficiencies are determined with a power-meter
exhibiting an uncertainty as well. In addition, the opto-
mechanical components in the setup might show a slight
drift during the intervals in which the measurements are
taken. Finally, the uncertainty on the transmission of the
position-dependent out-coupling originates from the fact
that the extinction ratio of the switchings conducted by
the electro-optic modulators can only be determined up
to some error.

Note that we need to only consider mechanism that
introduce inhomogeneous losses that are either dependent
on a certain coupling or a certain position because any
homogeneous losses (those acting uniformly on all optical
modes) will not affect the normalized probability distribu-
tions that we use here. More specifically, inhomogeneous
losses alter the probability amplitudes A;(NV) of the indi-
vidual modes in (B8) whereas homogeneous losses merely
alter the global pre-factor in (B8) but not the individual
amplitudes.

To perform the error estimation, we simulate the evolu-
tion of the walker according to the quantum walk evolution
operator and generate for each configuration multiple, in
this case 1000, different instances with varying parameters
chosen randomly within a defined range of uncertainty.
For the angle of the coin we assume an inaccuracy of 0.5°,
for the coupling efficiencies between different modes an un-
certainty of 2% and also 2% for the residual transmission
of the position-dependent out-coupling. Once this myriad
of evolutions based on sightly different walk parameters
is simulated, we calculate the values of the coherence and
non-classicality quantifiers for each simulated evolution.
Thus, we obtain a distribution of the quantifiers with
respect to different parameters. The standard deviation
of this distribution is the Monte-Carlo estimate of the
uncertainty that we plot as vertical and horizontal error
bars in Fig. 3.

Appendix D: Explanation of imperfect matching
observed in Fig. 3

In Fig. 3, even though the data confirms the theoretical
prediction within the error bars in the regime of small
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FIG. 4. The quantifier Ko, plotted against the angle
of the coin. We plot on the ordinate the quantifier Ko,
of coherences generated and detected as defined in Eq. (2)
and on the abscissa the angle of the coin used, for initial
polarisation cg = H (circles) and ¢o = V (crosses); the symbols
correspond to the experimental data. The red line represents
the theoretical prediction for the different angles Eq. (5) and
the black line represents the theoretical values obtained by
assuming a randomizing intermediate measurement. Error
bars are generated from a Monte-Carlo approach detailed
in Appendix C. A slight systematic deviation observed in
the higher-than-expected Ko, values can be explained by
imperfect intermediate measurements as described in this
section.

coin angles, a displacement of the experimental values
relative to the theoretical prediction is apparent. Here
we explore the possible causes of this imperfect matching
between theory and experiment.

As this error is more pronounced for the Kolmogorov
values than for the coherence measure, it could result
from imperfect intermediate measurements as these would
effect only the Kolmogorov and not the coherence values.
A perfect projective measurement in the context of our
quantum walk experiment is one that would couple out
all the light from all the modes except one. However, in
real experiments, this extinction is often imperfect as a
small fraction of the light continues to propagate in the
out-coupled modes.

In more detail, recall that Kg ., measures the difference
between the statistics after an unperturbed evolution and
the statistics that comes from an evolution having been
measured at some intermediate time. If this measurement
perturbs the evolution, Ko , is not zero. Such a pertur-
bation can stem from quantum-mechanical effects as we
expect in an ideal experiment, but this perturbation can
also see a contribution from an imperfect measurement.

Focusing on imperfect measurements, consider hypo-
thetically a measurement that projects the state into one
that is completely random. In our case, comparing the
highly structured probability distributions we get from the

CO, co
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FIG. 5. The quantifier Cy ., plotted against the angle
of the coin. We plot on the ordinate the quantifier Co,c,
of coherences generated and detected as defined in Eq. (4)
and on the abscissa the angle of the coin used, for initial
polarisation ¢o = H (circles) and co = V (crosses); the symbols
correspond to the experimental data. The red line represents
the theoretical prediction for the different angles Eq. (5). Error
bars are generated from a Monte-Carlo approach detailed in
Appendix C.

unperturbed evolution with evolving a flat distribution
with values of 1/[2(N + 1)] = 1/22 after the intermediate
measurement, we get the values displayed in Table I and
visualised in Fig. 4. of K¢ ¢, for the different angles and ini-
tial polarizations. More sophisticated models of imperfect
measurement can be considered but the current simple
model already provides some qualitative understanding.

0  co|Theory|Experiment Error | Randomizing
0° V| 0.000 0.064 + 0.001 1.909
0° H| 0.000 0.127 + 0.009 1.909
7° V| 0.237 0.221 + 0.076 1.477
7° H| 0.237 0.325 + 0.110 1.477
11° V| 0.343 0.446 + 0.093 1.464
11° H| 0.343 0.514 + 0.086 1.464
23° V| 0.720 0.825 + 0.075 1.248
23° H| 0.720 0.8298 £+ 0.059 1.248
34° V| 0.644 0.655 + 0.041 1.085
34° H| 0.644 0.833 + 0.038 1.085
47° V| 0.612 0.724 + 0.053 0.954
47° H| 0.612 0.705 + 0.061 0.954

TABLE I. Values for Kg,c,, for different coin angles and ini-
tial polarizations, from theoretical prediction, experimental
results and theoretical prediction assuming a randomizing
intermediate measurement.

We see that the values of Ky ., for a randomizing in-
termediate measurement are consistently higher than the
theoretical predictions. If we now consider an intermedi-
ate measurement that sees a small imperfection, then the
value of Ky ¢, is likely to be shifted towards the value one
would get introducing a totally random state. In other
words, assuming that the out-coupling at the intermediate
time is not perfect, one has a further perturbation due to
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the measurement and it is not surprising to have a value Note that such a perturbation due to the measurement
for Ko,¢,, which is slightly shifted towards the random does not affect the measure Cy .., as this is calculated
case and is thus consistently higher then the theoretical using the unperturbed evolutions only; and indeed, Cq ., is
prediction. remarkably close to the theoretical prediction (see Fig. 5).
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